SYMPLECTIC GEOMETRY, LECTURE 15

Prof. Denis Auroux

1. Hodge Theory

Theorem 1 (Hodge). For M a compact Kähler manifold, the deRham and Dolbeault cohomologies are related by $H^k_{dR}(M,\mathbb{C}) = \bigoplus_{p,q} H^{p,q}_{\overline{\partial}}(M)$, with $H^{p,q} \cong \overline{H^{q,p}}$.

Before we discuss this theorem, we need to go over Hodge theory for a compact, oriented Riemannian manifold (M, g).

Definition 1. For V an oriented Euclidean vector space, the Hodge * operator is the linear map $\bigwedge^k V \to \bigwedge^{n-k} V$ which, for any oriented orthonormal basis e_1, \ldots, e_n , maps $e_1 \wedge \cdots \wedge e_k \mapsto e_{k+1} \wedge \cdots \wedge e_n$.

Example. For any $V, *(1) = e_1 \wedge \cdots \wedge e_n$, and $** = (-1)^{k(n-k)}$.

Applying this to T_x^*M , we obtain a map on forms.

Remark. Note that,

(1)
$$\forall \alpha, \beta \in \Omega^k, \alpha \wedge *\beta = \langle \alpha, \beta \rangle. \text{vol}$$

Definition 2. The codifferential is the map

(2)
$$d^* = (-1)^{n(k-1)+1} * d^* : \Omega^k(M) \to \Omega^{k-1}(M)$$

Proposition 1. d^* is the L^2 formal adjoint to the deRham operator d, i.e. on a compact closed Riemannian manifold, $\forall \alpha \in \Omega^k, \beta \in \Omega^{k+1}$, we have

(3)
$$\langle d\alpha, \beta \rangle_{L^2} = \int_M \langle d\alpha, \beta \rangle d\text{vol} = \langle \alpha, d^*\beta \rangle_{L^2}$$

Proof. This follows from

(4)

$$\int_{M} \langle d\alpha, \beta \rangle d\mathrm{vol} = \int_{M} d\alpha \wedge *\beta = \int_{M} d(\alpha \wedge *\beta) - (-1)^{k} \int_{M} \alpha \wedge d * \beta$$

$$= (-1)^{k+1} \int_{M} \alpha \wedge d * \beta = (-1)^{k+1} \int_{M} \alpha \wedge *(*d * \beta)(-1)^{k(n-k)}$$

$$= (-1)^{kn+1} \int_{M} \langle \alpha, *d * \beta \rangle d\mathrm{vol}$$

Example. For \mathbb{R}^n with the standard metric,

(5)
$$\alpha = \sum_{I \subset \{1, \dots, n\}} \alpha_I dx_I \implies d\alpha = \sum_j dx_j \wedge \frac{\partial \alpha}{\partial x_j} \text{ and } d^* \alpha = -\sum_j i_{\frac{\partial}{\partial x_j}} \frac{\partial \alpha}{\partial x_j}$$

Definition 3. The Laplacian is $\Delta = dd^* + d^*d : \Omega^k \to \Omega^k$.

Note that, on $\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M), \Delta = (d+d^*)^2$. By the adjointness of d and d^* , we see that Δ is a self-adjoint, second order differential operator, i.e. $\langle \Delta \alpha, \beta \rangle_{L^2} = \langle \alpha, \Delta \beta \rangle_{L^2}$. Moreover,

(6)
$$\langle \Delta \alpha, \alpha \rangle_{L^2} = \langle dd^* \alpha, \alpha \rangle_{L^2} + \langle d^* d\alpha, \alpha \rangle_{L^2} = ||d^* \alpha||^2 + ||d\alpha||^2 \ge 0$$

so $\Delta \alpha = 0 \Leftrightarrow \alpha$ is closed and co-closed.

Definition 4. The space of harmonic forms is the set $\mathcal{H}^k = \{\alpha \in \Omega^k | \Delta \alpha = 0\}$.

We have a natural map $\mathcal{H}^k \to H^k, \alpha \mapsto [\alpha]$.

Theorem 2 (Hodge). For M a compact, oriented Riemannian manifold, every cohomology class has a unique harmonic representative, i.e. $\mathcal{H}^k \cong H^k$, and $\Omega^k(M) = \mathcal{H}^k \oplus_{L^2} d(\Omega^{k-1}) \oplus_{L^2} d^*(\Omega^{k+1})$.

Remark. Clearly $\mathcal{H}^k + d(\Omega^{k-1}) \subset \text{Ker } d = (\text{Im } d^*)^{\perp}$ and $\mathcal{H}^k + d^*(\Omega^{k+1}) \subset \text{Ker } d^* = (\text{Im } d)^{\perp}$, implying that the map $\mathcal{H}^k \to \mathcal{H}^k$ is injective. Surjectivity (i.e. existence of harmonic representatives) is more difficult and requires elliptic theory.

Definition 5. A differential operator of order k is a linear map $L: \Gamma(E) \to \Gamma(F)$ s.t., locally in coordinates,

(7)
$$L(s) = \sum_{|\alpha| \le k} A_{\alpha} \frac{\partial^{|\alpha|} s}{\partial x^{\alpha}}$$

where each A_{α} is a C^{∞} function with values in matrices, i.e. a local section of Hom(E, F). The symbol of L is the map

(8)
$$\sigma_k : T_x^* M \ni \xi \mapsto \sum_{|\alpha|=k} A_\alpha(x) \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n} \in \operatorname{Hom}(E_x, F_x)$$

L is elliptic if for every nonzero ξ , $\sigma(\xi)$ is an isomorphism.

Example. For instance, in local coordinates, the symbol of the Laplacian is given by $\sigma(\xi) = -|\sigma|^2 \cdot \mathrm{id}$.

Now, let L be a differential operator of order k: it extends from $L: C^{\infty}(E) \to C^{\infty}(F)$ to $L_s: W^s(E) \to W^{s-k}(F)$.

Definition 6. For $L : \Gamma(E) \to \Gamma(F)$ a differential operator, $P : \Gamma(F) \to \Gamma(E)$ is called a parametrix (or pseudoinverse) if $L \circ P - \mathrm{id}_E$ and $P \circ L - \mathrm{id}_F$ are smoothing operators, i.e. they extend continuously to $W^s(E) \to W^{s+1}(E)$.

Using Rellich's lemma on embedding of Sobolev spaces, we find that

Theorem 3. Every elliptic operator has a pseudoinverse.

Corollary 1. $\xi \in W^s(E)$, L is elliplic, and $L\xi \in C^{\infty}(F) \implies \xi \in C^{\infty}(E)$.

Proof. Let P be a parametrix. Let $S = P \circ L - I$, so

(9)
$$\xi = P \circ L\xi - S\xi$$

Since the former part lies in $C^{\infty}(E)$ and the latter in $W^{s+1}(E)$, we have that $\xi \in W^{s+1}(E)$. Iterating, $\xi \in C^{\infty}(E)$.