SYMPLECTIC GEOMETRY, LECTURE 12

Prof. Denis Auroux

1. Existence of Almost-Complex Structures

Let (M, ω) be a symplectic manifold. If J is a compatible almost-complex structure, we obtain invariants $c_{j}(T M, J) \in H^{2 j}(M, \mathbb{Z})$ of the deformation equivalence class of (M, ω).
Remark. There exist 4-manifolds $\left(M^{4}, \omega_{1}\right),\left(M^{4}, \omega_{2}\right)$ s.t. $c_{1}\left(T M, \omega_{1}\right) \neq c_{1}\left(T M, \omega_{2}\right)$.
We can use this to obtain an obstruction to the existence of an almost-complex structure on a 4-manifold: note that we have two Chern classes $c_{1}(T M, J) \in H^{2}(M, \mathbb{Z})$ and $c_{2}(T M, J)=e(T M) \in H^{4}(M, \mathbb{Z}) \cong \mathbb{Z}$ if M^{4} is closed, compact. Then the class

$$
\begin{equation*}
\left(1+c_{1}+c_{2}\right)\left(1-c_{1}+c_{2}\right)-1=-c_{1}^{2}+2 c_{2}=c_{2}(T M \oplus \overline{T M}, J \oplus \bar{J})=c_{2}\left(T M \otimes_{\mathbb{R}} \mathbb{C}, i\right) \tag{1}
\end{equation*}
$$

is independent of J.
More generally, for E a real vector space with complex structure J, we have an equivalence $\left(E \otimes_{\mathbb{R}} \mathbb{C}, i\right) \cong$ $E \oplus \bar{E}=(E, J) \oplus(E,-J)$. Indeed, J extends \mathbb{C}-linearly to an almost complex structure $J_{\mathbb{C}}$ which is diagonalizable with eigenvalues $\pm i$. Applying this to vector bundles, we obtain the Pontrjagin classes

$$
\begin{equation*}
p_{1}(T M)=-c_{2}\left(T M \otimes_{\mathbb{R}} \mathbb{C}\right) \in H^{4}(M, \mathbb{Z}) \cong \mathbb{Z} \tag{2}
\end{equation*}
$$

for a 4-manifold M.
Theorem 1. $p_{1}(T M) \cdot[M]=3 \sigma(M)$, where $\sigma(M)$ is the signature of M (the difference between the number of positive and negative eigenvalues of the intersection product $Q: H_{2}(M) \otimes H_{2}(M) \rightarrow \mathbb{Z},[A] \otimes[B] \mapsto[A \cap B]$ dual to the cup product on H^{2}).

Corollary 1. $c_{1}^{2} \cdot[M]=2 \chi(M)+3 \sigma(M)$.
Remark. Under the map $H^{2}(M, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z} / 2 \mathbb{Z})$, the Chern class $c_{1}(T M, J)$ gets sent to the Stiefel-Whitney class $w_{2}(T M)$. This means that

$$
\begin{equation*}
c_{1}(T M) \cdot[A] \equiv Q([A],[A]) \quad \bmod 2 \forall[A] \in H_{2}(M, \mathbb{Z}) \tag{3}
\end{equation*}
$$

Theorem 2. \exists an almost complex structure J on M^{k} s.t. $\alpha=c_{1}(T M, J) \in H^{2}(M, \mathbb{Z})$ iff α satisfies

$$
\begin{equation*}
\alpha^{2} \cdot[M]=2 \chi+3 \sigma \text { and } \alpha \cdot[A] \equiv Q([A],[A]) \quad \bmod 2 \forall[A] \in H_{2}(M, \mathbb{Z}) \tag{4}
\end{equation*}
$$

Examples:

- On S^{4}, if J were an almost complex structure, then $c_{1}\left(T S^{4}, J\right) \in H^{2}\left(S^{4}\right)=0$.. However, $\chi\left(S^{4}\right)=2$ and $\sigma\left(S^{4}\right)=0$, so $2 \cdot 2+3 \cdot 0$ cannot be c_{1}^{2}, and thus there is no almost complex structure.
- On $\mathbb{C P}^{2}$, we have $H_{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)=\mathbb{Z}$ generated by $\left[\mathbb{C P}^{1}\right]$ with intersection product $Q\left(\left[\mathbb{C P}^{1}\right],\left[\mathbb{C P}^{1}\right]\right)=1$ (the number of lines in the intersection of two planes in \mathbb{C}^{3}. By Mayer-Vietoris, $H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}, \mathbb{Z}\right) \cong \mathbb{Z}^{2}$ has intersection product $Q=I_{2 \times 2} \Longrightarrow \sigma=2$ and Euler characteristic $\chi=4$. Now, assume $c_{1}(T M, J)=$ $(a, b) \in H_{2}(M, \mathbb{Z})$: if there were an almost complex structure,

$$
\begin{equation*}
a^{2}+b^{2}=c_{1}^{2}=2 \chi+3 \sigma=14 \tag{5}
\end{equation*}
$$

which is impossible.

2. Types and Splittings

Let (M, J) be an almost complex structure, J extended \mathbb{C}-linearly to $T M \otimes \mathbb{C}=T M^{1,0} \oplus T M^{0,1}$ (with the decomposition being into $+i$ and $-i$ eigenspaces). Here, $T M^{1,0}=\{v-i J v \mid v \in T M\}$ is the set of holomorphic tangent vectors and $T M^{0,1}=\{v+i J v, v \in T M\}$ is the set of anti-holomorphic tangent vectors. For instance, on \mathbb{C}^{n}, this gives

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right)=\frac{\partial}{\partial z_{j}}, \frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)=\frac{\partial}{\partial \bar{z}_{j}} \tag{6}
\end{equation*}
$$

respectively. More generally, we have induced real isomorphisms

$$
\begin{equation*}
\pi^{1,0}: T M \rightarrow T M^{1,0}, v \mapsto v^{1,0}=\frac{1}{2}(v-i J v), \pi^{0,1}: T M \rightarrow T M^{0,1}, v \mapsto v^{0,1}=\frac{1}{2}(v+i J v) \tag{7}
\end{equation*}
$$

Then $(J v)^{1,0}=i\left(v^{1,0}\right),(J v)^{0,1}=-i\left(v^{0,1}\right)$, so $(T M, J) \cong T M^{1,0} \cong \overline{T M^{0,1}}$ as almost-complex bundles.
Similarly, the complexified cotangent bundle decomposes as $T^{*} M^{1,0}=\left\{\eta \in T^{*} M \otimes \mathbb{C} \mid \eta(J v)=i \eta(v)\right\}, T^{*} M^{0,1}=$ $\left\{\eta \in T^{*} M \otimes \mathbb{C} \mid \eta(J v)=-i \eta(v)\right\}$, with maps from the original cotangent bundle given by

$$
\begin{equation*}
\eta \mapsto \eta^{1,0}=\frac{1}{2}(\eta-i(\eta \circ J))=\frac{1}{2}\left(\eta+i J^{*} \eta\right), \eta \mapsto \eta^{0,1}=\frac{1}{2}(\eta+i(\eta \circ J))=\frac{1}{2}\left(\eta-i J^{*} \eta\right) \tag{8}
\end{equation*}
$$

For \mathbb{C}^{n}, we find that

$$
\begin{equation*}
J^{*} d x_{i}=d y_{i}, J^{*} d y_{i}=-d x_{i} \Longrightarrow d x_{j}+i d y_{j}=d z_{j} \in\left(T^{*} \mathbb{C}^{n}\right)^{1,0}, d x_{j}-i d y_{j}=d \overline{z_{j}} \in\left(T^{*} \mathbb{C}^{n}\right)^{0,1} \tag{9}
\end{equation*}
$$

More generally, on a complex manifold, in holomorphic local coordinates, we have $T^{*} M^{1,0}=\operatorname{Span}\left(d z_{j}\right)$. Note also that $T^{*} M^{1,0}$ pairs with $T M^{0,1}$ trivially.
2.1. Differential forms. Ω^{k} splits into forms of type $(p, q), p+q=k$, with

$$
\begin{equation*}
\wedge^{p, q} T^{*} M=\left(\wedge^{p} T^{*} M^{1,0}\right) \otimes\left(\wedge^{q} T^{*} M^{0,1}\right)=\bigoplus_{p+q=k} \wedge^{p, q} T^{*} M \tag{10}
\end{equation*}
$$

Definition 1. For $\alpha \in \Omega^{p, q}(M), \partial \alpha=(d \alpha)^{p+1, q} \in \Omega^{p+1, q}$ and $\bar{\partial} \alpha=(d \alpha)^{p, q+1} \in \Omega^{p, q+1}$.
In general,

$$
\begin{equation*}
d \alpha=(d \alpha)^{p+q+1,0}+(d \alpha)^{p+q, 1}+\cdots+(d \alpha)^{0, p+q+1} \tag{11}
\end{equation*}
$$

For a function, we have $d f=\partial f+\bar{\partial} f$. Now, say $f: M \rightarrow \mathbb{C}$ is J-holomorphic if $\bar{\partial} f=0 \Leftrightarrow d f \in \Omega^{1,0} \Leftrightarrow d f(J v)=$ $i d f(v)$.
2.2. Dolbeault cohomology. Assume d maps $\Omega^{p, q} \rightarrow \Omega^{p+1, q} \oplus \Omega^{p, q+1}$, i.e. $d=\partial+\bar{\partial}$. On \mathbb{C}^{n}, for instance, we have

$$
\begin{align*}
& \partial\left(\alpha_{I, J} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}\right)=\sum_{k} \frac{\partial \alpha_{I J}}{\partial z_{k}} d z_{k} \wedge d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}} \\
& \bar{\partial}\left(\alpha_{I, J} d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}\right)=\sum_{k} \frac{\partial \alpha_{I J}}{\partial \bar{z}_{k}} d \bar{z}_{k} \wedge d z_{i_{1}} \wedge \cdots \wedge d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}} \tag{12}
\end{align*}
$$

Then, $\forall \beta \in \Omega^{p, q}, 0=d^{2} \beta=\partial \partial \beta+\partial \bar{\partial} \beta+\bar{\partial} \partial \beta+\bar{\partial} \beta \beta \Longrightarrow \partial^{2}=0, \bar{\partial}^{2}=0, \partial \bar{\partial}+\bar{\partial} \partial=0$. Since $\bar{\partial}^{2}=0$, we obtain a complex $0 \rightarrow \Omega^{p, 0} \xrightarrow{\bar{\sigma}} \Omega^{p, 1} \ldots$.

Definition 2. The Dolbeault cohomology of M is

$$
\begin{equation*}
H^{p, q}(M)=\frac{\operatorname{Ker}\left(\bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}\right)}{\operatorname{Im}\left(\bar{\partial}: \Omega^{p, q-1} \rightarrow \Omega^{p, q}\right)} \tag{13}
\end{equation*}
$$

In general, this is not finite-dimensional. We'll see that on a compact Kähler manifold, i.e. a manifold with compatible symplectic and complex structures, $H^{k}(M, \mathbb{C})=\bigoplus_{p+q=k} H^{p, q}(M)$.
2.3. Integrability. Let (M, J) be a manifold with almost-complex structure.

Definition 3. The Nijenhuis tensor is the map $N(u, v)=[J u, J v]-J[u, J v]-J[J u, v]-[u, v]$ for u, vector fields on M.

In fact, $N(u, v)=-8 \operatorname{Re}\left(\left[u^{1,0}, v^{1,0}\right]\right)^{0,1}$.

