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1. Existence of Almost-Complex Structures 

Let (M, ω) be a symplectic manifold. If J is a compatible almost-complex structure, we obtain invariants 
cj (T M, J) ∈ H2j (M, Z) of the deformation equivalence class of (M, ω). 

Remark. There exist 4-manifolds (M4, ω1), (M 4, ω2) s.t. c1(T M, ω1) =� c1(T M, ω2). 

We can use this to obtain an obstruction to the existence of an almost-complex structure on a 4-manifold: 
note that we have two Chern classes c1(T M, J) ∈ H2(M, Z) and c2(T M, J) = e(TM) ∈ H4(M, Z) ∼= Z if M4 is 
closed, compact. Then the class 

(1) (1 + c1 + c2)(1 − c1 + c2) − 1 = −c 2 + 2c2 = c2(TM ⊕ TM, J ⊕ J) = c2(TM ⊗R C, i)1 

is independent of J . 
More generally, for E a real vector space with complex structure J , we have an equivalence (E ⊗R C, i) ∼= 

E⊕E = (E, J)⊕(E, −J). Indeed, J extends C-linearly to an almost complex structure JC which is diagonalizable 
with eigenvalues ±i. Applying this to vector bundles, we obtain the Pontrjagin classes 

(2)	 p1(TM) = −c2(TM ⊗R C) ∈ H4(M, Z) ∼= Z 

for a 4-manifold M . 

Theorem 1. p1(TM) [M ] = 3σ(M), where σ(M) is the signature of M (the difference between the number of · 
positive and negative eigenvalues of the intersection product Q : H2(M) ⊗ H2(M) → Z, [A] ⊗ [B] �→ [A ∩ B] dual 
to the cup product on H2). 

Corollary 1. c2 [M ] = 2χ(M) + 3σ(M).1 · 

Remark. Under the map H2(M, Z) H2(M, Z/2Z), the Chern class c1(T M, J) gets sent to the Stiefel-Whitney 
class w2(TM). This means that 

→ 

(3)	 c1(TM) [A] ≡ Q([A], [A]) mod 2 ∀[A] ∈ H2(M, Z)· 

Theorem 2. ∃ an almost complex structure J on Mk s.t. α = c1(T M, J) ∈ H2(M, Z) iff α satisfies 

(4)	 α2 [M ] = 2χ + 3σ and α [A] ≡ Q([A], [A]) mod 2 ∀[A] ∈ H2(M, Z)·	 · 

Examples: 

•	 On S4, if J were an almost complex structure, then c1(TS4, J) ∈ H2(S4) = 0.. However, χ(S4) = 2 
and σ(S4) = 0, so 2 2 + 3 0 cannot be c1

2, and thus there is no almost complex structure. · · 
•	 On CP2, we have H2(CP2 , Z) = Z generated by [CP1] with intersection product Q([CP1], [CP1]) = 1 (the 

number of lines in the intersection of two planes in C3 . By Mayer-Vietoris, H2(CP2#CP2 = Z2 has , Z) ∼
intersection product Q = I2×2 = ⇒ σ = 2 and Euler characteristic χ = 4. Now, assume c1(T M, J) = 
(a, b) ∈ H2(M, Z): if there were an almost complex structure, 

(5)	 a 2 + b2 = c1
2 = 2χ + 3σ = 14 

which is impossible. 
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2. Types and Splittings 

Let (M, J) be an almost complex structure, J extended C-linearly to TM ⊗ C = TM1,0 ⊕ TM 0,1 (with the 
decomposition being into +i and −i eigenspaces). Here, TM1,0 = {v − iJv|v ∈ TM} is the set of holomorphic 
tangent vectors and TM0,1 = {v + iJv, v ∈ TM} is the set of anti-holomorphic tangent vectors. For instance, 
on Cn, this gives 

1 ∂ ∂ ∂ 1 ∂ ∂ ∂
(6) 

2 ∂xj 
− i

∂yj 
= 

∂zj 
, 

2 ∂xj 
+ i

∂yj 
= 

∂zj 

respectively. More generally, we have induced real isomorphisms 

1 1(7) π1,0 : TM → TM1,0 , v �→ v 1,0 = 
2
(v − iJv), π0,1 : TM → TM0,1 , v �→ v 0,1 = 

2
(v + iJv) 

Then (Jv)1,0 = i(v1,0), (Jv)0,1 = −i(v0,1), so (T M, J) ∼ = TM0,1 as almost-complex bundles. = TM1,0 ∼
Similarly, the complexified cotangent bundle decomposes as T ∗M1,0 = {η ∈ T ∗M⊗C|η(Jv) = iη(v)}, T ∗M0,1 = 

{η ∈ T ∗M ⊗ C|η(Jv) = −iη(v)}, with maps from the original cotangent bundle given by 

1 1 1 1(8) η �→ η1,0 = 
2
(η − i(η ◦ J)) = 

2
(η + iJ∗η), η �→ η0,1 = 

2
(η + i(η ◦ J)) = 

2
(η − iJ∗η) 

For Cn, we find that 

(9) J∗dxi = dyi, J
∗dyi = −dxi = ⇒ dxj + idyj = dzj ∈ (T ∗Cn)1,0, dxj − idyj = dzj ∈ (T ∗Cn)0,1 

More generally, on a complex manifold, in holomorphic local coordinates, we have T ∗M1,0 = Span(dzj ). Note 
also that T ∗M1,0 pairs with TM0,1 trivially. 

2.1. Differential forms. Ωk splits into forms of type (p, q), p + q = k, with 

(10) ∧p,qT ∗M = (∧pT ∗M1,0) ⊗ (∧qT ∗M0,1) = ∧p,qT ∗M 
p+q=k 

Definition 1. For α ∈ Ωp,q (M ), ∂α = (dα)p+1,q ∈ Ωp+1,q and ∂α = (dα)p,q+1 ∈ Ωp,q+1 . 

In general, 

(11) dα = (dα)p+q+1,0 + (dα)p+q,1 + + (dα)0,p+q+1 · · · 

For a function, we have df = ∂f +∂f . Now, say f : M → C is J-holomorphic if ∂f = 0 ⇔ df ∈ Ω1,0 ⇔ df(Jv) = 
idf(v). 

2.2. Dolbeault cohomology. Assume d maps Ωp,q → Ωp+1,q ⊕ Ωp,q+1, i.e. d = ∂ + ∂. On Cn, for instance, 
we have � ∂αIJ 

∂(αI,J dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq ) = 
∂zk 

dzk ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq 

(12) k � ∂αIJ 
∂(αI,J dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq ) = 

∂zk 
dzk ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq 

k 

Then, ∀β ∈ Ωp,q, 0 = d2β = ∂∂β + ∂∂β + ∂∂β + ∂∂β = ⇒ ∂2 = 0, ∂ 
2 

= 0, ∂∂ + ∂∂ = 0. Since ∂ 
2 

= 0, we obtain 

a complex 0 Ωp,0 ∂ Ωp,1 .→ → · · · 

Definition 2. The Dolbeault cohomology of M is 

Ker (∂ : Ωp,q Ωp,q+1)
(13) Hp,q(M) = 

→ 

Im(∂ : Ωp,q−1 Ωp,q )→ 

In general, this is not finite-dimensional. We’ll see that on a compact Kähler manifold, i.e. a manifold with 
compatible symplectic and complex structures, Hk(M, C) = p+q=k H

p,q(M). 
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2.3. Integrability. Let (M, J) be a manifold with almost-complex structure.


Definition 3. The Nijenhuis tensor is the map N(u, v) = [Ju, Jv] − J [u, Jv] − J [Ju, v] − [u, v] for u, v vector

fields on M . 

In fact, N (u, v) = −8Re([u1,0, v1,0])0,1 . 


