SYMPLECTIC GEOMETRY, LECTURE 10

Prof. Denis Auroux

1. Curvature and the Covariant Derivative

Let ∇ be a connection, $R^{\nabla} \in \Omega^{2}(M$, End $E)$ its curvature, where

$$
\begin{equation*}
R^{\nabla}(u, v) s=\nabla_{u} \nabla_{v} s-\nabla_{v} \nabla_{u} s-\nabla_{[u, v]} s \tag{1}
\end{equation*}
$$

Last time, we saw that in a local trivialization, $\nabla=d+A$, where A is a 1 -form with values in $\operatorname{End}(E)$, and $R^{\nabla}=d A+A \wedge A$. Moreover, a change of basis given by $g \in C^{\infty}(U, \operatorname{End}(E))$ acts by

$$
\begin{equation*}
A \mapsto g^{-1} A g+g^{-1} d g, R^{\nabla} \mapsto g^{-1} R^{\nabla} g \tag{2}
\end{equation*}
$$

We can extend the covariant derivative $\nabla: C^{\infty}(M, E) \rightarrow \Omega^{1}(M, E)$ to an operator $d^{\nabla}: \Omega^{p}(M, E) \rightarrow$ $\Omega^{p+1}(M, E)$. Locally, $\Omega^{p}(M, E)$ is given by sums $\sum \alpha_{i} s_{i}$, where $\alpha_{i}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}$ are p-forms and $e_{i}=s_{i_{1} \cdots i_{p}}$ are sections of E, and d^{∇} maps this to $\sum\left(\nabla s_{i}\right) \wedge \alpha_{i}+s_{i} d \alpha_{i}$. In a trivialization $\nabla=d+A$, we have

$$
d^{\nabla}\left(\begin{array}{c}
\alpha_{1} \tag{3}\\
\vdots \\
\alpha_{r}
\end{array}\right)=d\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{r}
\end{array}\right)+A \wedge\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{r}
\end{array}\right)
$$

That is, $d^{\nabla}=d+A \wedge(\cdot)$.
Proposition 1. $R^{\nabla}=\left(d^{\nabla}\right)^{2}: \Omega^{0}(M, E) \rightarrow d^{\nabla} \Omega^{1}(M, E) \rightarrow{ }^{d^{\nabla}} \Omega^{2}(M, E)$. More generally,

$$
\begin{equation*}
R^{\nabla} \wedge \cdot=\left(d^{\nabla}\right)^{2}: \Omega^{p}(M, E) \rightarrow^{d^{\nabla}} \Omega^{p+1}(M, E) \rightarrow^{d^{\nabla}} \Omega^{p+2}(M, E) \tag{4}
\end{equation*}
$$

Proof. In a local trivialization,

$$
\begin{align*}
d^{\nabla}\left(d^{\nabla} \alpha\right) & =d^{\nabla}(d \alpha+A \wedge \alpha)=d(d \alpha+A \wedge \alpha)+A \wedge(d \alpha+A \wedge \alpha) \\
& =(d A) \wedge \alpha-A \wedge d \alpha+A \wedge d \alpha+A \wedge A \wedge \alpha=(d A+A \wedge A) \wedge \alpha \tag{5}
\end{align*}
$$

as desired.
Remark. R^{∇} can be thought of as an obstruction for $0 \rightarrow C^{\infty}(E) \xrightarrow{d^{\nabla}} \Omega^{1}(E) \xrightarrow{d^{\nabla}} \cdots$ being a complex. If the manifold is flat, i.e. $R^{\nabla}=0$, then we obtain a twisted de Rham cohomology with coefficients in E. R^{∇} is also an obstruction to the integrability of the horizontal distribution \mathcal{H}^{∇}, i.e. homotopy invariance of parallel transport.

When $E=T M$ for (M, g) a Riemannian manifold, there is a unique metric $\left(X \cdot g(u, v)=g\left(\nabla_{X} u, v\right)+\right.$ $\left.g\left(u, \nabla_{X} v\right)\right)$ connection on $T M$ s.t. $\nabla_{X} Y-\nabla_{Y} X=[X, Y]$, called the Levi-Cevita connection. Now, let (M, ω, g, J) be a symplectic manifold with a compatible almost complex structure. Then $T M$ is a complex vector bundle, but $\nabla^{L C}$ is not \mathbb{C}-linear in general. Indeed, it is \mathbb{C}-linear $\Leftrightarrow \nabla J=0$ for the induced connection ∇ on $\operatorname{End}(T M) \Leftrightarrow J$ is integrable (i.e. an actual complex structure).

2. Complex Vector Bundles and Chern Classes

Let $L \rightarrow M$ be a complex line bundle, ∇ a connection (possibly Hermitian w.r.t. a Hermitian metric $\langle\cdot, \cdot\rangle$). In a local trivialization, $R^{\nabla}=d A \in \Omega^{2}(M, \mathbb{C})\left(\right.$ resp. $\left.\Omega^{2}(M, i \mathbb{R})\right)$ since $A \in \Omega^{1}(U, \mathbb{C})\left(\right.$ resp. $\left.\Omega^{1}(M, i \mathbb{R})\right)$ has $A \wedge A=0$. Thus, R^{∇} is a closed 2-form, and has a corresponding class $c=\left[R^{\nabla}\right] \in H^{2}(M, \mathbb{C})\left(\right.$ resp. $\Omega^{2}(M, i \mathbb{R})$). For ∇^{\prime} another connection, we have a global decomposition $\nabla^{\prime}=\nabla+a$ for $a \in \Omega^{1}(M, \mathbb{C})$, so $R^{\nabla^{\prime}}=R^{\nabla}+d a$ and $\left[R^{\nabla}\right]=\left[R^{\nabla^{\prime}}\right]$. Thus, c is an invariant of L independent of ∇ in $H^{2}(M, \mathbb{C})\left(\right.$ resp. $\left.H^{2}(M, i \mathbb{R})\right)$. Since we can always choose a connection compatible with a given Hermitian form, we have

Definition 1. The first Chern class of L is $c_{1}(L)=\left[\frac{1}{2 \pi} R^{\nabla}\right] \in H^{2}(M, \mathbb{R})$.
Remark. From algebraic topology, we can obtain an associated integer class $c_{1}(L) \in H^{2}(M, \mathbb{Z})$ corresponding to this form.

Now, let $E \rightarrow M$ be a complex vector bundle with connection ∇.
Definition 2. The total Chern form is

$$
\begin{equation*}
c(E, \nabla)=\operatorname{det}\left(I+\frac{i}{2 \pi} R^{\nabla}\right) \in \bigoplus_{p \text { even }} \Omega^{p}(M, \mathbb{C}) \tag{6}
\end{equation*}
$$

Decomposing this element, we obtain projections $c_{j}(E, \nabla) \in \Omega^{2 j}(M, \mathbb{C})$. Here $I+\frac{i}{2 \pi} R^{\nabla}$ is a matrix with entries (const +2 -forms) in a local trivialization, and det is the usual determinant under the \wedge product. As before, this is independent of change of basis.

Remark. By the formula for $\operatorname{det}(I+t M)=1+t \cdot \operatorname{Tr}(M)+\cdots$, we find that $c_{1}(E, \nabla)=\frac{i}{2 \pi} \operatorname{Tr}\left(R^{\nabla}\right)$, and

$$
\begin{equation*}
c_{r}(E, \nabla)=\left(\frac{i}{2 \pi}\right)^{r} \operatorname{det} R^{\nabla} \tag{7}
\end{equation*}
$$

We can do the same for any ad-invariant polynomial in R^{∇}, giving Chern-Weil theory (for complex vector bundles, simply get functions of c_{1}, \ldots, c_{r}).
Theorem 1. $c_{j}(E, \nabla)$ is closed, and $c_{j}(E)=\left[c_{j}(E, \nabla)\right] \in H^{2 j}(M, \mathbb{R})$ is independent of ∇.
Proof. Closedness follows from the Bianchi identity for $d^{\nabla}\left(R^{\nabla}\right)$, and independence follows from showing that $c_{j}\left(E, \nabla^{\prime}\right)-c_{j}(E, \nabla)$ is a sum of exact terms.
Remark. Another approach involves the Euler class of an oriented rank k real vector bundle $E \rightarrow M$ over a compact, oriented manifold M. Let s be a section of E, chosen so s is transverse to the zero section and $Z=s^{-1}(0)$ is a smooth, oriented submanifold of codimension k. Then, at a point of $Z, \nabla s:\left.N Z \rightarrow E\right|_{Z}$ is an isomorphism. We define $e(E)=[Z] \in H_{n-k}(M, \mathbb{Z}) \cong H^{k}(M, \mathbb{Z})$ by Poincaré duality. If E was a rank $r \mathbb{C}$-vector bundle, then $c_{r}(E)=e(E)$.

Remark. For $T M \rightarrow M, e(T M) \in H^{n}(M, \mathbb{Z})=\mathbb{Z} \Leftrightarrow \chi(M)=e(T M) \cdot[M]$. Moreover, for E, ∇ a flat connection, $c_{j}(E)=0 \in H^{2 j}(M, \mathbb{R})$.

