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SYMPLECTIC GEOMETRY, LECTURE 8 

Prof. Denis Auroux 

1. Almost-complex Structures 

Recall compatible triples (ω, g, J), wherein two of the three determine the third (g(u, v) = ω(u, Jv), ω(u, v) = 
g(Ju, v), J(u) = g̃−1(ω̃(u)) where g̃, ω̃ are the induced isomorphisms TM T ∗M).→ 

Proposition 1. For (M, ω) a symplectic manifold with Riemannian metric g, ∃ a canonical almost complex 
structure J compatible with ω. 

Idea. Do polar decomposition on every tangent space.	 � 

Corollary 1. Any symplectic manifold has compatible almost-complex structures, and the space of such struc
tures is path connected. 

Proof. For the first part, using a partition of unity gives a Riemannian metric, so the rest follows from the 
proposition. For the second part, given J0, J1, let gi = ω( , Ji·) for i = 0, 1 and set gt = (1 − t)g0 + tg1. Each ·
of these (for t ∈ [0, 1]) is a metric, and gives an ω-compatible J̃t by polar decomposition, with J̃0 = J0 and 
J̃1 = J1. � 

The mechanism of the proof also gives 

Proposition 2. The set J (TxM, ωx) of ωx-compatible complex structures on TxM is contractible, i.e. ∃ht : 
J (TxM, ωx) → J (TxM, ωx) for t ∈ [0, 1], h0 = id, h1 = J → J0, ht(J0) = J0∀t. 

Corollary 2. The space of compatible almost-complex structures on (M, ω) is contractible. It is the space of 
sections of a bundle whose fibers are contractible by the previous proposition. 

More generally, let E M be a vector bundle. → 

Definition 1. A metric on E is a family of positive-definite scalar products �·, ·�x : Ex × Ex R. E is 
symplectic (resp. complex) if there is a family of nondegenerate skew-symmetric forms ωx : Ex × Ex 

→ 
R (resp. 

complex structures Jx : Ex → Ex, Jx 
2 = −1). 

→ 

Then metrics always exist, and every sympletic vector bundle is a complex vector bundle and vice versa. 

Proposition 3. For (M, J) an almost-complex manifold, ω0, ω1 two symplectic forms compatible with J , ωt = 
(1 − t)ω0 + tω1 is symplectic and J-compatible ∀t ∈ [0, 1] (i.e. the space of J-compatible ω is convex). 

Note that 
•	 The space of such ω might be empty, as there are almost complex manifolds (like S6) which have no 

symplectic structures. 
•	 Not every manifold has an almost-complex structure (e.g. S4, by the Ehresman-Hopf theorem). 

Problem. ∃ an almost-complex structure ⇔ ∃ a nondegenerate 2-form. 

The proposition works if we put tame instead of compatible, i.e. require ω(u, Ju) > 0 ∀u = 0 but not 
symmetry. 

Proof. ωt is closed and ωt(u, Ju) = (1 − t)ω0(u, Ju) + tω1(u, Ju) > 0 ∀u �= 0, so ωt is nondegenerate and thus 
symplectic. Moreover, gt(u, v) = ωt(u, Jv) = (1 − t)g0(u, v) + tg1(u, v) is a metric. � 

Definition 2. X ⊂ (M, J) is an almost-complex submanifold if J(TX) = TX, i.e. ∀x ∈ X, v ∈ TxX, Jv ∈ TxX. 
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Proposition 4. If X is an almost-complex submanifold in compatible (M, ω, J), then X is symplectic (i.e. ω|X 

is nondegenerate). 

Proof. ∀u ∈ TxX, u = 0� , Ju ∈ TxX and ω(u, Ju) > 0, so ∀u ∈ TxX � {0}, ω(u, ·)|TxX ∈ Tx 
∗X is nonzero, giving 

us an isomorphism TX T ∗X as desired. �→ 

Let (R2n , Ω0, J0, g0) be the standard symplectic structure, complex structure, and metric on R2n . 
•	 Sp(2n, R) is the group of linear symplectomorphisms of (R2n , Ω0), i.e. {A ∈ GL(2n, R)|Ω0(Au, Av) = 

Ω(u, v) ∀u, v}. 
GL(n, C) is the group of C-linear automorphisms of (R2n, J0), i.e. {A AJ0 = J0A}.•	
O(2n) is the group of isometries of (R2n, g0), i.e. {A AtA = 1}. 

|
•	

U(n) = GL(n, C) ∩ O(2n). 
|

• 

Proposition 5. Sp(2n) ∩ O(2n) = Sp(2n) ∩ GL(n, C) = O(2n) ∩ GL(n, C) = U(n). 

Proof. The intersection of any two of these sets is the set of automorphisms preserving two of the three in a 
compatible triple, and thus must preserve all of them. � 

•	 For (V, Ω, J) a symplectic vector space with compatible almost-complex structure, ∃ an isomorphism 
(V, Ω, J) ∼ (R2n , Ω0, J0).→ 

•	 The space Ω(V ) of all symplectic structures on V is ∼ = GL(2n, R)/Sp(2n), as GL(V )= GL(V )/Sp(V, Ω0) ∼
acts transitively on Ω(V ) by φ �→ φ∗Ω0 with stabilizer Sp(V, Ω). 

• The space J (V ) of almost-complex structures on V is ∼	 = GL(2n, R)/GL(n, C).= GL(V )/GL(V, J) ∼
• The space J (V, Ω) of Ω-compatible J ’s on V is ∼	 = Sp(2n, R)/U(n).= Sp(V, Ω)/Sp(V, Ω) ∩ GL(V, J) ∼
• The constractibility of J (V, Ω) is now the fact that Sp(2n, R) retracts onto its subgroup U(n). 

2. Vector Bundles and Connections 

For E M a real or complex vector bundle, we have an exact sequence → 

(1)	 0 Ex TpE 
dπ 

TxM 0→ → → → 

for each p ∈ E, x = π(p). Here, Ex ⊂ TpE gives the set of vertical directions: we would like a splitting 
TpE = Ex ⊕ (TpE)horiz , i.e. a way to transport from one fiber to another. The data required to do this is a 
connection. 

Definition 3. A connection � on E is an R or C-linear mapping C∞(M, E) → C∞(M, T ∗M ⊗E) = Ω1(M, E) 
s.t. �(fσ) = df σ + f�σ. For v ∈ TxM , we let �v denote the mapping σ �→ �σ(v).· 

Choose a local trivialization of E, i.e. a frame of sections ei s.t. Rr (or Cr)×U ∼ U , (ξ1, . . . , ξr� �	 = E| ) �→ ξiei. 
Then �σ = �( ξiei) = (dξi)ei + ξi�ei, i.e. locally � = d + A, where A = (aij ) ∈ Ω1(M, End(E)) 
is a matrix-valued 1-form (the connection 1-form) with aij the component of �ej along ei. Globally, given 
�, ��, �(fs) −��(fs) = f(�s −��s), so �−�� is C∞(M, E)-linear and the space of connections is an affine 
space modeled on Ω1(M, End(E)). 

2.1. Horizontal Distribution. Let σ : M E be a section, dxσ : TxM Tσ(x)E the induced map. Then →	 → 
�σ(x) ∈ Tx 

∗M ⊗ Ex depends only on dσ(x). Thus, we can also think of � as a projection π� : Tσ(x)E → Ex, 
with �vσ = π�(dσ(v)). Then H� = Ker π� is the horizontal subspace at p(x). 

Definition 4. For �·, ·� a Euclidean or Hermitian metric on E, � is compatible with the metric if d�σ, σ�� = 
��σ, σ�� + �σ, �σ��. 

As above, locally one can find an orthonormal frame of sections (ei), �ei, ej � = δi,j . Writing � = d + A in 
this trivialization, the compatibility becomes 

(2)	 ��ξ, η� + �ξ, �η� = �dξ, η� + �Aξ, η� + �ξ, dη� + �ξ, Aη� 

Since d�ξ, η� = �dξ, η� + �ξ, dη�, this means that the connection 1-form A must be skew-symmetric (or anti-
Hermitian). 

Also note that � on E induces a �∗ on E∗ by d(φ(σ)) = ��∗φ, σ� + �φ, �σ�, and similarly for E ⊗ F , etc. 


