SYMPLECTIC GEOMETRY, LECTURE 8

Prof. Denis Auroux

1. Almost-complex Structures

Recall compatible triples (ω, g, J), wherein two of the three determine the third $(g(u, v)=\omega(u, J v), \omega(u, v)=$ $g(J u, v), J(u)=\tilde{g}^{-1}(\tilde{\omega}(u))$ where $\tilde{g}, \tilde{\omega}$ are the induced isomorphisms $\left.T M \rightarrow T^{*} M\right)$.

Proposition 1. For (M, ω) a symplectic manifold with Riemannian metric g, \exists a canonical almost complex structure J compatible with ω.

Idea. Do polar decomposition on every tangent space.
Corollary 1. Any symplectic manifold has compatible almost-complex structures, and the space of such structures is path connected.

Proof. For the first part, using a partition of unity gives a Riemannian metric, so the rest follows from the proposition. For the second part, given J_{0}, J_{1}, let $g_{i}=\omega\left(\cdot, J_{i} \cdot\right)$ for $i=0,1$ and set $g_{t}=(1-t) g_{0}+t g_{1}$. Each of these (for $t \in[0,1]$) is a metric, and gives an ω-compatible \tilde{J}_{t} by polar decomposition, with $\tilde{J}_{0}=J_{0}$ and $\tilde{J}_{1}=J_{1}$.

The mechanism of the proof also gives
Proposition 2. The set $\mathcal{J}\left(T_{x} M, \omega_{x}\right)$ of ω_{x}-compatible complex structures on $T_{x} M$ is contractible, i.e. $\exists h_{t}$: $\mathcal{J}\left(T_{x} M, \omega_{x}\right) \rightarrow \mathcal{J}\left(T_{x} M, \omega_{x}\right)$ for $t \in[0,1], h_{0}=\mathrm{id}, h_{1}=\mathcal{J} \rightarrow J_{0}, h_{t}\left(J_{0}\right)=J_{0} \forall t$.

Corollary 2. The space of compatible almost-complex structures on (M, ω) is contractible. It is the space of sections of a bundle whose fibers are contractible by the previous proposition.

More generally, let $E \rightarrow M$ be a vector bundle.
Definition 1. A metric on E is a family of positive-definite scalar products $\langle\cdot, \cdot\rangle_{x}: E_{x} \times E_{x} \rightarrow \mathbb{R}$. E is symplectic (resp. complex) if there is a family of nondegenerate skew-symmetric forms $\omega_{x}: E_{x} \times E_{x} \rightarrow \mathbb{R}$ (resp. complex structures $J_{x}: E_{x} \rightarrow E_{x}, J_{x}^{2}=-1$).

Then metrics always exist, and every sympletic vector bundle is a complex vector bundle and vice versa.
Proposition 3. For (M, J) an almost-complex manifold, ω_{0}, ω_{1} two symplectic forms compatible with J, $\omega_{t}=$ $(1-t) \omega_{0}+t \omega_{1}$ is symplectic and J-compatible $\forall t \in[0,1]$ (i.e. the space of J-compatible ω is convex).

Note that

- The space of such ω might be empty, as there are almost complex manifolds (like S^{6}) which have no symplectic structures.
- Not every manifold has an almost-complex structure (e.g. S^{4}, by the Ehresman-Hopf theorem).

Problem. \exists an almost-complex structure $\Leftrightarrow \exists$ a nondegenerate 2-form.

- The proposition works if we put tame instead of compatible, i.e. require $\omega(u, J u)>0 \forall u \neq 0$ but not symmetry.

Proof. ω_{t} is closed and $\omega_{t}(u, J u)=(1-t) \omega_{0}(u, J u)+t \omega_{1}(u, J u)>0 \forall u \neq 0$, so ω_{t} is nondegenerate and thus symplectic. Moreover, $g_{t}(u, v)=\omega_{t}(u, J v)=(1-t) g_{0}(u, v)+t g_{1}(u, v)$ is a metric.

Definition 2. $X \subset(M, J)$ is an almost-complex submanifold if $J(T X)=T X$, i.e. $\forall x \in X, v \in T_{x} X, J v \in T_{x} X$.

Proposition 4. If X is an almost-complex submanifold in compatible (M, ω, J), then X is symplectic (i.e. $\left.\omega\right|_{X}$ is nondegenerate).

Proof. $\forall u \in T_{x} X, u \neq 0, J u \in T_{x} X$ and $\omega(u, J u)>0$, so $\forall u \in T_{x} X \backslash\{0\},\left.\omega(u, \cdot)\right|_{T_{x} X} \in T_{x}^{*} X$ is nonzero, giving us an isomorphism $T X \rightarrow T^{*} X$ as desired.
Let $\left(\mathbb{R}^{2 n}, \Omega_{0}, J_{0}, g_{0}\right)$ be the standard symplectic structure, complex structure, and metric on $\mathbb{R}^{2 n}$.

- $\operatorname{Sp}(2 n, \mathbb{R})$ is the group of linear symplectomorphisms of $\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$, i.e. $\left\{A \in G L(2 n, \mathbb{R}) \mid \Omega_{0}(A u, A v)=\right.$ $\Omega(u, v) \forall u, v\}$.
- $\mathrm{GL}(n, \mathbb{C})$ is the group of \mathbb{C}-linear automorphisms of $\left(\mathbb{R}^{2 n}, J_{0}\right)$, i.e. $\left\{A \mid A J_{0}=J_{0} A\right\}$.
- $O(2 n)$ is the group of isometries of $\left(\mathbb{R}^{2 n}, g_{0}\right)$, i.e. $\left\{A \mid A^{t} A=1\right\}$.
- $U(n)=\mathrm{GL}(n, \mathbb{C}) \cap O(2 n)$.

Proposition 5. $\mathrm{Sp}(2 n) \cap O(2 n)=\mathrm{Sp}(2 n) \cap \mathrm{GL}(n, \mathbb{C})=O(2 n) \cap \mathrm{GL}(n, \mathbb{C})=U(n)$.
Proof. The intersection of any two of these sets is the set of automorphisms preserving two of the three in a compatible triple, and thus must preserve all of them.

- For (V, Ω, J) a symplectic vector space with compatible almost-complex structure, \exists an isomorphism $(V, \Omega, J) \xrightarrow{\sim}\left(\mathbb{R}^{2 n}, \Omega_{0}, J_{0}\right)$.
- The space $\Omega(V)$ of all symplectic structures on V is $\cong \mathrm{GL}(V) / \operatorname{Sp}\left(V, \Omega_{0}\right) \cong \mathrm{GL}(2 n, \mathbb{R}) / \operatorname{Sp}(2 n)$, as $G L(V)$ acts transitively on $\Omega(V)$ by $\phi \mapsto \phi^{*} \Omega_{0}$ with stabilizer $\operatorname{Sp}(V, \Omega)$.
- The space $\mathcal{J}(V)$ of almost-complex structures on V is $\cong \mathrm{GL}(V) / \mathrm{GL}(V, J) \cong \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C})$.
- The space $\mathcal{J}(V, \Omega)$ of Ω-compatible J 's on V is $\cong \operatorname{Sp}(V, \Omega) / \operatorname{Sp}(V, \Omega) \cap G L(V, J) \cong \operatorname{Sp}(2 n, \mathbb{R}) / U(n)$.
- The constractibility of $\mathcal{J}(V, \Omega)$ is now the fact that $\operatorname{Sp}(2 n, \mathbb{R})$ retracts onto its subgroup $U(n)$.

2. Vector Bundles and Connections

For $E \rightarrow M$ a real or complex vector bundle, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{x} \rightarrow T_{p} E \xrightarrow{d \pi} T_{x} M \rightarrow 0 \tag{1}
\end{equation*}
$$

for each $p \in E, x=\pi(p)$. Here, $E_{x} \subset T_{p} E$ gives the set of vertical directions: we would like a splitting $T_{p} E=E_{x} \oplus\left(T_{p} E\right)^{h o r i z}$, i.e. a way to transport from one fiber to another. The data required to do this is a connection.

Definition 3. A connection ∇ on E is an \mathbb{R} or \mathbb{C}-linear mapping $C^{\infty}(M, E) \rightarrow C^{\infty}\left(M, T^{*} M \otimes E\right)=\Omega^{1}(M, E)$ s.t. $\nabla(f \sigma)=d f \cdot \sigma+f \nabla \sigma$. For $v \in T_{x} M$, we let ∇_{v} denote the mapping $\sigma \mapsto \nabla \sigma(v)$.

Choose a local trivialization of E, i.e. a frame of sections e_{i} s.t. $\mathbb{R}^{r}\left(\right.$ or $\left.\mathbb{C}^{r}\right) \times\left. U \cong E\right|_{U},\left(\xi_{1}, \ldots, \xi_{r}\right) \mapsto \sum \xi_{i} e_{i}$. Then $\nabla \sigma=\nabla\left(\sum \xi_{i} e_{i}\right)=\sum\left(d \xi_{i}\right) e_{i}+\xi_{i} \nabla e_{i}$, i.e. locally $\nabla=d+A$, where $A=\left(a_{i j}\right) \in \Omega^{1}(M, \operatorname{End}(E))$ is a matrix-valued 1 -form (the connection 1 -form) with $a_{i j}$ the component of ∇e_{j} along e_{i}. Globally, given $\nabla, \nabla^{\prime}, \nabla(f s)-\nabla^{\prime}(f s)=f\left(\nabla s-\nabla^{\prime} s\right)$, so $\nabla-\nabla^{\prime}$ is $C^{\infty}(M, E)$-linear and the space of connections is an affine space modeled on $\Omega^{1}(M, \operatorname{End}(E))$.
2.1. Horizontal Distribution. Let $\sigma: M \rightarrow E$ be a section, $d_{x} \sigma: T_{x} M \rightarrow T_{\sigma(x)} E$ the induced map. Then $\nabla \sigma(x) \in T_{x}^{*} M \otimes E_{x}$ depends only on $d \sigma(x)$. Thus, we can also think of ∇ as a projection $\pi^{\nabla}: T_{\sigma(x)} E \rightarrow E_{x}$, with $\nabla_{v} \sigma=\pi^{\nabla}(d \sigma(v))$. Then $\mathcal{H}^{\nabla}=\operatorname{Ker} \pi^{\nabla}$ is the horizontal subspace at $p(x)$.
Definition 4. For $\langle\cdot, \cdot\rangle$ a Euclidean or Hermitian metric on E, ∇ is compatible with the metric if $d\left\langle\sigma, \sigma^{\prime}\right\rangle=$ $\left\langle\nabla \sigma, \sigma^{\prime}\right\rangle+\left\langle\sigma, \nabla \sigma^{\prime}\right\rangle$.

As above, locally one can find an orthonormal frame of sections $\left(e_{i}\right),\left\langle e_{i}, e_{j}\right\rangle=\delta_{i, j}$. Writing $\nabla=d+A$ in this trivialization, the compatibility becomes

$$
\begin{equation*}
\langle\nabla \xi, \eta\rangle+\langle\xi, \nabla \eta\rangle=\langle d \xi, \eta\rangle+\langle A \xi, \eta\rangle+\langle\xi, d \eta\rangle+\langle\xi, A \eta\rangle \tag{2}
\end{equation*}
$$

Since $d\langle\xi, \eta\rangle=\langle d \xi, \eta\rangle+\langle\xi, d \eta\rangle$, this means that the connection 1-form A must be skew-symmetric (or antiHermitian).

Also note that ∇ on E induces a ∇^{*} on E^{*} by $d(\phi(\sigma))=\left\langle\nabla^{*} \phi, \sigma\right\rangle+\langle\phi, \nabla \sigma\rangle$, and similarly for $E \otimes F$, etc.

