SYMPLECTIC GEOMETRY, LECTURE 7

Prof. Denis Auroux

1. Floer homology

For a Hamiltonian diffeomorphism $f:(M, \omega) \rightarrow(M, \omega), f=\phi_{H}^{1}, H_{t}: M \rightarrow \mathbb{R}$ 1-periodic in t, we want to look for fixed points of f, i.e. 1-periodic orbits of $X_{H}, x^{\prime}(t)=X_{H_{t}}(x(t))$. We consider the Floer complex $C F^{*}(f)$, whose basis are 1-periodic orbits; these correspond to critical points of the action functional \mathcal{A}_{H} on a covering of the free loop space $\Omega(M)$. The differential 'counts' solutions of Floer's equations

$$
\begin{equation*}
u: \mathbb{R} \times S^{1} \rightarrow M, \frac{\partial u}{\partial s}+J(u(s, t))\left(\frac{\partial u}{\partial t}-X_{H_{t}}(u)\right)=0 \tag{1}
\end{equation*}
$$

such that $\lim _{s \rightarrow \pm \infty} u(s, \cdot)=x_{ \pm}$(1-periodic orbits). The solutions are formal gradient flow lines of \mathcal{A}_{H} between the critical points $x_{ \pm}$.

Theorem 1 (Arnold's conjecture). If the fixed points of f are nondegenerate, then $\# \operatorname{Fix}(f) \geq \sum_{i} \operatorname{dim} H^{i}(M)$, i.e. $\# \operatorname{Fix}(f)=\operatorname{rk} C F^{*} \geq \operatorname{rk} H F^{*}=\operatorname{rk} H^{*}\left(C F^{*}, \partial\right)=\operatorname{rk} H^{*}(M)$.
1.1. Lagrangian intersections. There is a notion of Lagrangian Floer homology, which is not always defined (in fact, there are explicit obstructions to its existence). The idea is to count intersections of Lagrangian submanifolds $L, L^{\prime} \subset M$ in a manner which is invariant under Hamiltonian deformations (isotopies). Assume that L and L^{\prime} are transverse (if not, e.g. when $L=L^{\prime}$, replace the submanifold L by the graph L_{t} of an exact 1-form in $T^{*} L$). To define Floer homology, one defines a complex $C F^{*}\left(L, L^{\prime}\right)$ whose basis is the set of intersection points, and whose differential is given by $\partial p=\sum_{q} n_{p, q} q$, where $n_{p, q}$ counts solutions to

$$
\begin{equation*}
u: \mathbb{R} \times[0,1] \rightarrow M, u(\mathbb{R} \times 0) \subset L, u(\mathbb{R} \times 1) \subset L^{\prime}, \frac{\partial u}{\partial s}+J \frac{\partial u}{\partial t}=0 \tag{2}
\end{equation*}
$$

Under suitable assumptions, one finds that $\partial^{2}=0$, giving us a Floer homology

$$
\begin{equation*}
H F^{*}\left(L, L^{\prime}\right)=H^{*}\left(C F^{*}\left(L, L^{\prime}\right), \partial\right) \tag{3}
\end{equation*}
$$

which is invariant under Hamiltonian deformations of L, L^{\prime}. Moreover, rk $H F^{*} \leq \operatorname{rk} C F^{*}=\left|L \cap L^{\prime}\right|$.
Theorem 2 (Floer, Oh, Fukaya-Oh-Ohta-Ono). Given a compact Lagrangian submanifold $L \subset M$ which is $" r e l a t i v e l y$ spin" (i.e. $\left.w_{2}(T L) \in \operatorname{Im}\left\{i^{*}: H^{2}(M, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{2}(L, \mathbb{Z} / 2 \mathbb{Z})\right\}\right)$ s.t. $i_{*}: H_{1}(L, \mathbb{Q}) \rightarrow H_{1}(M, \mathbb{Q})$ is injective, then $\forall \psi \in \operatorname{Ham}(M, \omega)$ s.t. $\psi(L)$ intersects L transversely, $\#(L \cap \psi(L)) \geq \sum \operatorname{dim} H_{i}(L, \mathbb{Q})$.

Remark. Applying this theorem to the diagonal $\Delta=\Delta(M) \subset M \times M$ and the graph of a Hamiltonian diffeomorphism f on M, one recovers Arnold's conjecture.

2. Almost-Complex Structures

To begin, we will study complex structures on vector spaces.
Definition 1. A complex structure on a vector space V is an endomorphism $J: V \rightarrow V$ s.t. $J^{2}=-I$. Thinking of this J as multiplication by i turns V into a complex vector space, $(x+i y) v=x v+y J v$. If V is a symplectic vector space with symplectic form Ω, a complex structure is compatible if $G(u, v)=\Omega(u, J v)$ is a positive symmetric inner product. Note that being symmetric is equivalent to $\Omega(J u, J v)=\Omega(u, v)$, and being positive is precisely $\Omega(u, J u)>0 \forall u \neq 0$.

Example. Let $V=\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$ be the standard symplectic vector space, with standard basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$, and define J_{0} by $e_{i} \mapsto f_{i}, f_{i} \mapsto-e_{i}$. Then

$$
\begin{equation*}
J_{0}^{2}=-\mathrm{id}, G_{0}(u, v)=\Omega_{0}\left(u, J_{0} v\right) \Longrightarrow G_{0}\left(e_{i}, e_{i}\right)=1, G_{0}\left(f_{i}, f_{i}\right)=1 \tag{4}
\end{equation*}
$$

and all other pairings are 0 . In matrix terms, $\Omega_{0}=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$, and $J_{0}=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$, so $G_{0}=\Omega_{0} J_{0}=I$. This gives us a natural isomorphism with \mathbb{C}^{n}.
Proposition 1. If (V, Ω) is a symplectic vector space, \exists a compatible J. Moreover, given any positive inner product $\langle\cdot, \cdot\rangle$ on V, we can build an Ω-compatible complex structure on V canonically (though it has no direct relation to the given inner product).

Proof. For the first part, taking $J=J_{0}$ in a standard basis gives the desired endomorphism. For the second part, by the nondegeneracy of Ω, we have isomorphisms $u \mapsto \Omega(u, \cdot)$ and $u \mapsto\langle u, \cdot\rangle$ from V to V^{*}. We thus obtain an endomorphism $A=\langle \rangle^{-1} \circ \Omega$ s.t. $\Omega(u, v)=\langle A u, v\rangle$. A is invertible and skew-symmetric w.r.t. \rangle, i.e. $A^{*}=-A$ (since $\left.\Omega(v, u)=\langle A v, u\rangle=\left\langle v, A^{*} u\right\rangle=\left\langle A^{*} u, v\right\rangle=-\Omega(u, v)=-\langle A u, v\rangle\right)$. Thus, $A A^{*}=-A^{2}$ is symmetric and positive definite, therefore diagonalizable with real, strictly positive eigenvalues. This implies the existence of a square root $\sqrt{A A^{*}}\left(=\operatorname{diag}\left(\sqrt{\lambda_{i}}\right)\right.$, so define $J=\left(\sqrt{A A^{*}}\right)^{-1} A$. (Note that the decomposition $A=\sqrt{A A^{*}} J$ gives a "polar decomposition" of A.) A commutes with $\sqrt{A A^{*}}$: letting V_{i} be the eigenspace of $A A^{*}$ with eigenvalue λ_{i}, or similarly that of $\sqrt{A A^{*}}$ with eigenvalue $\sqrt{\lambda_{i}}$, we find that,

$$
\begin{equation*}
\forall v \in V_{i},\left(A A^{*}\right) A v=-A^{3} v=A\left(A A^{*}\right) v=\lambda_{i} A v \Longrightarrow A v \in V_{i} \tag{5}
\end{equation*}
$$

So J also commutes with A and with $\sqrt{A A^{*}}$, and thus is skew-symmetric

$$
\begin{equation*}
J^{*}=A^{*}\left(\sqrt{A A^{*}}\right)^{-1}=-A\left(\sqrt{A A^{*}}\right)^{-1}=-J \tag{6}
\end{equation*}
$$

and orthogonal

$$
\begin{equation*}
J^{*} J=A^{*}\left(\sqrt{A A^{*}}\right)^{-1}\left(\sqrt{A A^{*}}\right)^{-1} A=\mathrm{id} \tag{7}
\end{equation*}
$$

In particular, $J^{2}=-J^{*} J=-$ id. For compatibility, note that

$$
\begin{align*}
\Omega(J u, J v) & =\langle A J u, J v\rangle=\langle J A u, J v\rangle=\langle A u, v\rangle=\Omega(u, v) \\
\Omega(u, J u) & =\langle A u, J u\rangle=\langle-J A u, u\rangle=\left\langle-\left(\sqrt{A A^{*}}\right)^{-1} A A u, u\right\rangle \tag{8}\\
& =\left\langle\left(\sqrt{A A^{*}}\right)^{-1}\left(A A^{*}\right) u, u\right\rangle=\left\langle\left(\sqrt{A A^{*}}\right) u, u\right\rangle>0
\end{align*}
$$

thus completing the proof.
Remark. Note that $G(u, v)=\Omega(u, J v)=\left\langle\sqrt{A A^{*}} u, v\right\rangle$, so if $\langle\cdot, \cdot\rangle$ was already compatible with Ω, then $A A^{*}=$ $I, J=A, G=\langle\cdot, \cdot\rangle$.
Definition 2. An almost-complex structure on a manifold M is $J \in \operatorname{End}(T M)$ s.t. $J^{2}=-I$ (i.e. $\forall x \in M$, J_{x} is a complex structure on $\left.T_{x} M\right)$. If $M=(M, \omega)$ is a symplectic manifold, J is compatible if $\forall x \in M$, J_{x} is ω_{x}-compatible, with associated Riemannian metric $g_{x}(u, v)=\omega_{x}\left(u, J_{x} v\right)$. We say that (ω, g, J) is a compatible triple, with any two determining the third.

