Prof. Denis Auroux

1. Applications

- (1) The work done last time gives us a new way to look at $T_{id}Symp(M,\omega)$ (using C^1 -topology, wherein $f_i : X \to Y$ converges to f iff $f_i \to f$ uniformly on compact sets and same for $df_i : TX \to TY$. Now, $f \in Symp(M,\omega)$ gives a graph graph $(f) = \{(x, f(x))\} \subset (M \times M, \operatorname{pr}_1^*\omega - \operatorname{pr}_2^*\omega)$ which is a Lagrangian submanifold. If f is C^1 -close to the identity map, then graph(f) is C^1 -close to the diagonal $\Delta = \{(x,x)\} \subset (M \times M, \operatorname{pr}_1^*\omega - \operatorname{pr}_2^*\omega)$ (i.e. the graph of the identity map). By Weinstein, a tubular neighborhood of Δ is diffeomorphic to $U_0 \subset (T^*M, \omega_{T^*M})$, and the graph of f gives a section (C^1 -close to the zero section), i.e. the graph of a C^1 -small $\mu \in \Omega^1(M)$. The fact that its graph is Lagrangian implies that μ is closed, i.e. $d\mu = 0$. Thus, we have an identification $T_{id}(Symp(M,\omega)) \cong \{\mu \in \Omega^1 | d\mu = 0\}$ with C^1 topologies.
- (2)

Theorem 1. For (M, ω) compact, if $H^1(M, \mathbb{R}) = 0$, then every symplectomorphism of M which is C^1 close to the identity has ≥ 2 fixed points.

Theorem 2. For (M, ω) symplectic, $X \subset (M, \omega)$ compact and Lagrangian, if $H^1(X, \mathbb{R}) = 0$, then every Lagrangian submanifold of M which is C^1 close to X intersects X in ≥ 2 points.

The first theorem follows from the second, using the diagonal embedding $\Delta \subset M \times M$. To see the second theorem, note that $H^1(X) = 0$ implies that, given any graph $Y = \text{graph}(\mu) C^1$ -close to X with $d\mu = 0$, we have $\mu = dh$ for some $h : X \to \mathbb{R}$. Since such an h must have at least 2 critical points, \exists at least 2 points at which $\mu = 0$, i.e. points at which Y intersects X.

2. Arnold Conjecture

Arnold's conjecture: Let (M, ω) be compact, $f \in \text{Ham}(M, \omega)$ the time 1 flow of X_{H_t} for $H_t : M \to \mathbb{R}$ a 1-periodic Hamiltonian $(H : M \times \mathbb{R} \to \mathbb{R} \text{ smooth with } H_{t+1} = H_t)$. Then the number of fixed points of f is at least the minimal number of critical points of a smooth function on M. Moreover, assume the fixed points of f are nondegenerate, i.e. if f(x) = x then det $(d_x f - \text{id}) \neq 0$. Then #Fix(f) is at least the minimal number of critical points of M, which in turn is $\geq \sum_i \dim H^i(M)$.

Remark. The last inequality follows from classical Morse theory. Given a Morse function f on a manifold M (equipped with a Riemannian metric satisfying the Morse-Smale condition), we have the Morse complex C^i generated by critical points of index i, and the Morse differential $d : C^i \to C^{i+1}$ which counts gradient trajectories between critical points. Then $H^*(C^*, d) \simeq H^*(M)$, so $\#\operatorname{Fix}(f) = \sum \dim C^i \ge \sum \dim H^i$.

The case where $H_t = H$ is independent of t is easy: if p is a critical point of H then $X_H(p) = 0$ so the flow f fixes p. The general case was proved by Conley-Zehnder, Floer, Hofer-Salamon, Ono, Fukaya-Ono, Li-Tian, ... using *Floer homology*. Floer homology is formally the ∞ -dimensional Morse theory of a functional on a covering of the loop space, $\widetilde{\Omega M} = \{\gamma : S^1 \to M \text{ contractible} + \text{ homotopy class of disc with } \partial D = \gamma\}$:

(1)
$$\mathcal{A}_H: \widetilde{\Omega M} \to \mathbb{R}, \quad \mathcal{A}_H(\gamma) = -\int_{D^2} u^* \omega - \int_{S^1} H(t, \gamma(t)) dt$$

where the first term involves $u: D^2 \to M$ with $u(\partial D) = \gamma$ in the given homotopy class.

Prof. Denis Auroux

Given $v: S^1 \to \gamma^* TM$ (a vector field along γ), the differential of \mathcal{A}_H is given by

$$D\mathcal{A}_{H(\gamma)}(v) = -\int_{S^1} \omega(v(t), \dot{\gamma}(t)) \, dt - \int_{S^1} dH_{t(\gamma(t))}(v(t)) \, dt = \int_{S^1} (i_{\dot{\gamma}(t)}\omega - dH_t)(v(t)) \, dt.$$

Since $dH_t = i_{X_t}\omega$, this vanishes $\forall v$ if and only if $\dot{\gamma}(t) = X_t(\gamma(t))$, i.e. γ is a periodic orbit of the flow. Hence critical points of \mathcal{A}_H correspond to fixed points of f. Moreover, formally gradient trajectories of \mathcal{A}_H correspond to solutions $u : \mathbb{R} \times S^1 \times M$, $(s, t) \mapsto u(s, t)$ of the PDE

(2)
$$\frac{\partial u}{\partial s} + J(u) \left(\frac{\partial u}{\partial t} - \nabla H_t(u)\right) = 0.$$