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1. Applications 

(1) The work done last time gives us a new way to look at TidSymp(M, ω) (using C1-topology, wherein 
fi : X Y converges to f iff fi f uniformly on compact sets and same for dfi : TX TY .→ → →
Now, f ∈ Symp(M, ω) gives a graph graph(f) = {(x, f(x))} ⊂ (M × M, pr∗ 

1ω − pr2
∗ω) which is a 

Lagrangian submanifold. If f is C1-close to the identity map, then graph(f) is C1-close to the diagonal 
Δ = {(x, x)} ⊂ (M × M, pr∗ 

1ω − pr2
∗ω) (i.e. the graph of the identity map). By Weinstein, a tubular 

neighborhood of Δ is diffeomorphic to U0 ⊂ (T ∗M, ωT ∗M ), and the graph of f gives a section (C1-close to 
the zero section), i.e. the graph of a C1-small µ ∈ Ω1(M). The fact that its graph is Lagrangian implies 
that µ is closed, i.e. dµ = 0. Thus, we have an identification Tid(Symp(M, ω)) ∼ dµ = 0} with= {µ ∈ Ω1|
C1 topologies. 

(2) 

Theorem 1. For (M, ω) compact, if H1(M, R) = 0, then every symplectomorphism of M which is C1 

close to the identity has ≥ 2 fixed points. 

Theorem 2. For (M, ω) symplectic, X ⊂ (M, ω) compact and Lagrangian, if H1(X, R) = 0, then every 
Lagrangian submanifold of M which is C1 close to X intersects X in ≥ 2 points. 

The first theorem follows from the second, using the diagonal embedding Δ ⊂ M × M . To see the 
second theorem, note that H1(X) = 0 implies that, given any graph Y = graph(µ) C1-close to X with 
dµ = 0, we have µ = dh for some h : X → R. Since such an h must have at least 2 critical points, ∃ at 
least 2 points at which µ = 0, i.e. points at which Y intersects X. 

2. Arnold Conjecture 

Arnold’s conjecture: Let (M, ω) be compact, f ∈ Ham(M, ω) the time 1 flow of XHt for Ht : M → R a 
1-periodic Hamiltonian (H : M × R → R smooth with Ht+1 = Ht). Then the number of fixed points of f is at 
least the minimal number of critical points of a smooth function on M . Moreover, assume the fixed points of f 
are nondegenerate, i.e. if f(x) = x then det (dxf − id) = 0. Then #Fix(f) is at least the minimal number of 
critical points of a Morse function on M , which in turn is ≥ dim Hi(M).i 

Remark. The last inequality follows from classical Morse theory. Given a Morse function f on a manifold 
M (equipped with a Riemannian metric satisfying the Morse-Smale condition), we have the Morse complex 
Ci generated by critical points of index i, and the Morse differential d : Ci Ci+1 which counts gradient 
trajectories between critical points. Then H∗(C∗, d) � H∗(M), so #Fix(f) = 

�→
dim Ci ≥ 

� 
dim Hi . 

The case where Ht = H is independent of t is easy: if p is a critical point of H then XH (p) = 0 so the flow f 
fixes p. The general case was proved by Conley-Zehnder, Floer, Hofer-Salamon, Ono, Fukaya-Ono, Li-Tian, ... 
using Floer homology. Floer homology is formally the ∞-dimensonal Morse theory of a functional on a covering 
of the loop space, � = {γ : S1 M contractible + homotopy class of disc with ∂D = γ}:ΩM → 

(1) ΩM R, AH (γ) = − H(t, γ(t)) dtAH : � → 
D2 

u∗ω − 
S1 

where the first term involves u : D2 M with u(∂D) = γ in the given homotopy class. → 
1 
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Given v : S1 γ∗TM (a vector field along γ), the differential of AH is given by → � � � 
DAH (γ)(v) = − ω(v(t), γ̇(t)) dt − dHt (γ(t))(v(t)) dt = (iγ̇(t)ω − dHt)(v(t)) dt. 

S1 S1 S1 

Since dHt = iXt ω, this vanishes ∀v if and only if γ̇(t) = Xt(γ(t)), i.e. γ is a periodic orbit of the flow. Hence 
critical points of AH correspond to fixed points of f . Moreover, formally gradient trajectories of AH correspond 
to solutions u : R × S1 × M , (s, t) �→ u(s, t) of the PDE 

∂u ∂u 
(2) 

∂s 
+ J(u) 

∂t 
−�Ht(u) = 0. 
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