SYMPLECTIC GEOMETRY, LECTURE 5

Prof. Denis Auroux

Last time we proved:

Theorem 1 (Moser). Let M be a compact manifold, (ω_t) symplectic forms, $[\omega_t]$ constant $\implies (M, \omega_0) \cong (M, \omega_1)$.

Theorem 2 (Darboux). Locally, any symplectic manifold is locally isomorphic to $(\mathbb{R}^{2n}, \omega_0)$.

1. TUBULAR NEIGHBORHOODS

Let $M^n \supset X^k$ be a submanifold with inclusion map *i*. Then we get a map $d_x i : T_x X \hookrightarrow T_x M$, with associated normal space $N_x X = T_x M/T_x X$. Note that if there is a metric, one can identify this with the orthogonal space to X at x. Putting all these spaces together, we get a normal bundle $NX = \{(x, v) | x \in X, v \in N_x X\}$ with zero section $i_0 : X \to NX, x \mapsto (x, 0)$.

Theorem 3. $\exists U_0 \ a \ neighborhood \ of \ X \ in \ NX$ (via the 0-section) and U_1 a neighborhood of X in M s.t. $\exists \phi : U_0 \xrightarrow{\sim} U_1$ a diffeomorphism.

Proof. (Idea) Equip M with a Riemannian metric g, so $N_x X \xrightarrow{\sim} T_x X^{\perp} \subset T_x M$. Then, given $x \in X, v \in N_x X$ for |v| sufficiently small $(|v| = \sqrt{g(v, v)} < \epsilon)$, we obtain an exponential function $\exp_x(v)$ (defined by considering a small geodesic segment with origin x and tangent vector v). We obtain a map $U_0 \to M, (x, v) \mapsto \exp_x(v)$. For $x \in X, T_{(x,0)}(NX) = T_x X \oplus N_x X$ and

(1)
$$d_{(x,0)}\exp(u,v) = u + v \in T_x X \oplus T_x X^{\perp}$$

this giving us a local diffeomorphism near the 0-section. Thus, locally on some neighborhood of the 0-section in NX, exp induces a diffeomorphism onto $\exp(U_0) =$ neighborhood of X in M.

Let $U_1 = \{ \exp_x(v) | |v| < \epsilon'(x) \} \subset M$ be a tubular neighborhood of X in M as constructed above, with $U_0 \subset NX$ the corresponding neighborhood of the zero section. Via the projection $\pi : U_0 \to X$, whose fibers are balls in \mathbb{R}^{n-k} , we see that U_1 retracts onto X, i.e. we have a null-homotopic map $U_1 \xrightarrow{\pi} X \xrightarrow{i} U_1$.

Corollary 1. $i^*: H^*(U_1, \mathbb{R}) \to H^*(X, \mathbb{R})$ is an isomorphism.

Proposition 1. $\beta \in \Omega^{\ell}(U), d\beta = 0, i^*\beta = \beta|_X = 0 \implies \exists \mu \in \Omega^{\ell-1}(U), \beta = d\mu \text{ and } \mu_x = 0 \forall x \in X.$

Proof. Identify $U \cong U_0 \subset NX$, set $\rho_t : (x, v) \mapsto (x, tv)$, and let

(2)
$$\mu_{(x,v)} = \int_0^1 \rho_t^*(i_{(0,v)}\beta) dt$$

Then $\mu = 0$ on the zero section, and

(3)
$$d\mu = \int_0^1 \rho_t^*(di_{X_t}\beta)dt$$

where $X_t(x, tv) = (0, v)$. Since β is closed, $di_{X_t}\beta = L_{X_t}\beta$, so

(4)
$$d\mu = \int_0^1 \frac{d}{dt} (\rho_t^* \beta) dt = \rho_1^* \beta - \rho_0^* \beta = \beta - \pi^* i^* \beta = \beta$$

Theorem 4 (Local Moser). Let $X \hookrightarrow M$ be a submanifold, ω_0, ω_1 symplectic forms on M s.t. $(\omega_0)_p = (\omega_1)_p \forall p \in X$. Then \exists neighborhoods $U_0, U_1 \supset X$ and $\phi : U_0 \xrightarrow{\sim} U_1$ s.t. $\phi^* \omega_1 = \omega_0$ and $\phi|_X = \text{id}$.

Prof. Denis Auroux

That is, we have a symplectomorphism $(U_0, \omega_0) \xrightarrow{\sim} (U_1, \omega_1)$ commuting with the inclusion of X.

Proof. Let U_0 be a tubular neighborhood of X. Since $\omega_1 - \omega_0$ is closed and is 0 on X, by the above proposition we have a form $\mu \in \Omega^1(U_0)$ s.t. $\omega_1 - \omega_0 = d\mu$ and μ is 0 along X. Now, let $\omega_t = (1 - t)\omega_0 + t\omega_1$: these form a family of closed two-forms which are ω_0 along X and thus nondegenerate at X. Since nondegeneracy is an open condition, $\exists U'_0 \subset U_0$ on which ω_t is symplectic $\forall t$. $\exists v_t$ a vector field on U'_0 s.t. $i_{v_t}\omega_t = -\mu$ with $v_t = 0$ along X. Letting ρ_t be the flow of v_t , we find that ρ_t is the identity along X, and \exists a neighborhood U''_0 on which the flow is well defined. Finally,

(5)
$$\frac{d}{dt}(\rho_t^*\omega_t) = \rho_t^*\left(L_{v_t}\omega_t + \frac{d\omega_t}{dt}\right) = \rho_t^*(-d\mu + (\omega_1 - \omega_0)) = 0$$

Proposition 2. Let $X \hookrightarrow (M, \omega)$ be a Lagrangian submanifold. Then $NX \xrightarrow{\sim} T^*X$.

Proof. $E \subset (V, \Omega)$ a Lagrangian subspace $\implies \Omega : V \xrightarrow{\sim} V^* \twoheadrightarrow E^*, v \mapsto \Omega(v, \cdot)$ is onto with kernel $\cong E^{\perp \Omega} = E$, so $V/E \cong E^*$.

Theorem 5 (Weinstein's Lagrangian Neighborhood). Let (M, ω) be a symplectic manifold, $i : X \hookrightarrow M$ a closed Lagrangian submanifold, $i_0 : X \to (T^*X, \omega_0)$ the zero-section. Then $\exists U_0$ a neighborhood of X in T^*X and U a neighborhood of X in M s.t. we have a symplectomorphism $(U_0, \omega_0) \xrightarrow{\sim} (U, \omega)$ which is the identity on X.

Proof. $NX \cong T^*X$, so $\exists N_0 \supset X$ in $T^*X, N \supset X$ in M, and a diffeomorphism $\psi : N_0 \xrightarrow{\sim} N$ which preserves X. Now, let ω_0 be the canonical form on T^*X and $\omega_1 = \psi^*\omega$. These are both sympectic forms on $N_0 \subset T^*X$ s.t. the zero section X is Lagrangian for both.

We claim that we can build (canonically) a family of isomorphisms $L_p: T_pN_0 \to T_pN_0$ for $p \in X$ s.t. $L_{p|T_pX} = \text{id}$ and $(L_p^*\omega_1)_p = (\omega_0)_p$. By Whitney's extension theorem, \exists a neighborhood $N' \supset X$ and an embedding $h: N' \hookrightarrow N_0$ s.t.

(6)
$$h|_X = \mathrm{id}, dh_p = L_p \forall p \in X$$

(Idea: use a Riemannian metric, and set $h(p,\xi) = \exp_{p,0} L_p(0,\xi)$). Then $\forall p \in X, (h^*\omega_1)_p = (\omega_0)_p$, so we can use local Moser for $h^*\omega_1$ and ω_0 . We therefore obtain $U_0, U_1 \supset X$ and a local symplectomorphism $f: (U_0, \omega_0) \xrightarrow{\sim} (U_1, h^*\omega_1)$. Setting $\phi = \psi \circ h \circ f$ gives us the desired result.

To prove the claim, decompose $T_{(p,0)}N_0 = T_pX \oplus T_p^*X$, with a chosen basis for T_pX and the dual basis for T_p^*X . We have two symplectic forms on this space, namely $\omega_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}, \omega = \begin{pmatrix} 0 & -B^t \\ B & C \end{pmatrix}$. That is, we know that

(7)
$$\omega_0((v_1,\xi_1),(v_2,\xi_2)) = \xi_1(v_2) - \xi_2(v_1)$$

and $\omega|_{T_pX} = 0$. We want to find a matrix $L = \begin{pmatrix} I & * \\ 0 & * \end{pmatrix}$ s.t. $L^t \omega L = \omega_0$. Setting

(8)
$$L = \begin{pmatrix} I & -\frac{1}{2}B^{-1}CB^{-t} \\ 0 & B^{-t} \end{pmatrix}$$

gives the desired matrix: furthermore, the construction doesn't depend on the choice of basis.