SYMPLECTIC GEOMETRY, LECTURE 5

Prof. Denis Auroux

Last time we proved:
Theorem 1 (Moser). Let M be a compact manifold, $\left(\omega_{t}\right)$ symplectic forms, $\left[\omega_{t}\right]$ constant $\Longrightarrow\left(M, \omega_{0}\right) \cong$ $\left(M, \omega_{1}\right)$.

Theorem 2 (Darboux). Locally, any symplectic manifold is locally isomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

1. Tubular Neighborhoods

Let $M^{n} \supset X^{k}$ be a submanifold with inclusion map i. Then we get a map $d_{x} i: T_{x} X \hookrightarrow T_{x} M$, with associated normal space $N_{x} X=T_{x} M / T_{x} X$. Note that if there is a metric, one can identify this with the orthogonal space to X at x. Putting all these spaces together, we get a normal bundle $N X=\left\{(x, v) \mid x \in X, v \in N_{x} X\right\}$ with zero section $i_{0}: X \rightarrow N X, x \mapsto(x, 0)$.
Theorem 3. $\exists U_{0}$ a neighborhood of X in $N X$ (via the 0 -section) and U_{1} a neighborhood of X in M s.t. $\exists \phi: U_{0} \xrightarrow{\sim} U_{1}$ a diffeomorphism.
Proof. (Idea) Equip M with a Riemannian metric g, so $N_{x} X \xrightarrow{\sim} T_{x} X^{\perp} \subset T_{x} M$. Then, given $x \in X, v \in N_{x} X$ for $|v|$ sufficiently small $(|v|=\sqrt{g(v, v)}<\epsilon)$, we obtain an exponential function $\exp _{x}(v)$ (defined by considering a small geodesic segment with origin x and tangent vector $v)$. We obtain a map $U_{0} \rightarrow M,(x, v) \mapsto \exp _{x}(v)$. For $x \in X, T_{(x, 0)}(N X)=T_{x} X \oplus N_{x} X$ and

$$
\begin{equation*}
d_{(x, 0)} \exp (u, v)=u+v \in T_{x} X \oplus T_{x} X^{\perp} \tag{1}
\end{equation*}
$$

this giving us a local diffeomorphism near the 0 -section. Thus, locally on some neighborhood of the 0 -section in $N X$, exp induces a diffeomorphism onto $\exp \left(U_{0}\right)=$ neighborhood of X in M.

Let $U_{1}=\left\{\exp _{x}(v)| | v \mid<\epsilon^{\prime}(x)\right\} \subset M$ be a tubular neighborhood of X in M as constructed above, with $U_{0} \subset N X$ the corresponding neighborhood of the zero section. Via the projection $\pi: U_{0} \rightarrow X$, whose fibers are balls in \mathbb{R}^{n-k}, we see that U_{1} retracts onto X, i.e. we have a null-homotopic map $U_{1} \xrightarrow{\pi} X \xrightarrow{i} U_{1}$.

Corollary 1. $i^{*}: H^{*}\left(U_{1}, \mathbb{R}\right) \rightarrow H^{*}(X, \mathbb{R})$ is an isomorphism.
Proposition 1. $\beta \in \Omega^{\ell}(U), d \beta=0, i^{*} \beta=\left.\beta\right|_{X}=0 \Longrightarrow \exists \mu \in \Omega^{\ell-1}(U), \beta=d \mu$ and $\mu_{x}=0 \forall x \in X$.
Proof. Identify $U \cong U_{0} \subset N X$, set $\rho_{t}:(x, v) \mapsto(x, t v)$, and let

$$
\begin{equation*}
\mu_{(x, v)}=\int_{0}^{1} \rho_{t}^{*}\left(i_{(0, v)} \beta\right) d t \tag{2}
\end{equation*}
$$

Then $\mu=0$ on the zero section, and

$$
\begin{equation*}
d \mu=\int_{0}^{1} \rho_{t}^{*}\left(d i_{X_{t}} \beta\right) d t \tag{3}
\end{equation*}
$$

where $X_{t}(x, t v)=(0, v)$. Since β is closed, $d i_{X_{t}} \beta=L_{X_{t}} \beta$, so

$$
\begin{equation*}
d \mu=\int_{0}^{1} \frac{d}{d t}\left(\rho_{t}^{*} \beta\right) d t=\rho_{1}^{*} \beta-\rho_{0}^{*} \beta=\beta-\pi^{*} i^{*} \beta=\beta \tag{4}
\end{equation*}
$$

Theorem 4 (Local Moser). Let $X \hookrightarrow M$ be a submanifold, ω_{0}, ω_{1} symplectic forms on M s.t. $\left(\omega_{0}\right)_{p}=\left(\omega_{1}\right)_{p} \forall p \in$ X. Then \exists neighborhoods $U_{0}, U_{1} \supset X$ and $\phi: U_{0} \xrightarrow{\sim} U_{1}$ s.t. $\phi^{*} \omega_{1}=\omega_{0}$ and $\left.\phi\right|_{X}=\mathrm{id}$.

That is, we have a symplectomorphism $\left(U_{0}, \omega_{0}\right) \xrightarrow{\sim}\left(U_{1}, \omega_{1}\right)$ commuting with the inclusion of X.
Proof. Let U_{0} be a tubular neighborhood of X. Since $\omega_{1}-\omega_{0}$ is closed and is 0 on X, by the above proposition we have a form $\mu \in \Omega^{1}\left(U_{0}\right)$ s.t. $\omega_{1}-\omega_{0}=d \mu$ and μ is 0 along X. Now, let $\omega_{t}=(1-t) \omega_{0}+t \omega_{1}$: these form a family of closed two-forms which are ω_{0} along X and thus nondegenerate at X. Since nondegeneracy is an open condition, $\exists U_{0}^{\prime} \subset U_{0}$ on which ω_{t} is symplectic $\forall t$. $\exists v_{t}$ a vector field on U_{0}^{\prime} s.t. $i_{v_{t}} \omega_{t}=-\mu$ with $v_{t}=0$ along X. Letting ρ_{t} be the flow of v_{t}, we find that ρ_{t} is the identity along X, and \exists a neighborhood $U_{0}^{\prime \prime}$ on which the flow is well defined. Finally,

$$
\begin{equation*}
\frac{d}{d t}\left(\rho_{t}^{*} \omega_{t}\right)=\rho_{t}^{*}\left(L_{v_{t}} \omega_{t}+\frac{d \omega_{t}}{d t}\right)=\rho_{t}^{*}\left(-d \mu+\left(\omega_{1}-\omega_{0}\right)\right)=0 \tag{5}
\end{equation*}
$$

Proposition 2. Let $X \hookrightarrow(M, \omega)$ be a Lagrangian submanifold. Then $N X \xrightarrow{\sim} T^{*} X$.
Proof. $E \subset(V, \Omega)$ a Lagrangian subspace $\Longrightarrow \Omega: V \xrightarrow{\sim} V^{*} \rightarrow E^{*}, v \mapsto \Omega(v, \cdot)$ is onto with kernel $\cong E^{\perp \Omega}=E$, so $V / E \cong E^{*}$.
Theorem 5 (Weinstein's Lagrangian Neighborhood). Let (M, ω) be a symplectic manifold, $i: X \hookrightarrow M$ a closed Lagrangian submanifold, $i_{0}: X \rightarrow\left(T^{*} X, \omega_{0}\right)$ the zero-section. Then $\exists U_{0}$ a neighborhood of X in $T^{*} X$ and U a neighborhood of X in M s.t. we have a symplectomorphism $\left(U_{0}, \omega_{0}\right) \xrightarrow{\sim}(U, \omega)$ which is the identity on X.

Proof. $N X \cong T^{*} X$, so $\exists N_{0} \supset X$ in $T^{*} X, N \supset X$ in M, and a diffeomorphism $\psi: N_{0} \xrightarrow{\sim} N$ which preserves X. Now, let ω_{0} be the canonical form on $T^{*} X$ and $\omega_{1}=\psi^{*} \omega$. These are both sympectic forms on $N_{0} \subset T^{*} X$ s.t. the zero section X is Lagrangian for both.

We claim that we can build (canonically) a family of isomorphisms $L_{p}: T_{p} N_{0} \rightarrow T_{p} N_{0}$ for $p \in X$ s.t. $L_{p \mid T_{p} X}=\mathrm{id}$ and $\left(L_{p}^{*} \omega_{1}\right)_{p}=\left(\omega_{0}\right)_{p}$. By Whitney's extension theorem, \exists a neighborhood $N^{\prime} \supset X$ and an embedding $h: N^{\prime} \hookrightarrow N_{0}$ s.t.

$$
\begin{equation*}
\left.h\right|_{X}=\mathrm{id}, d h_{p}=L_{p} \forall p \in X \tag{6}
\end{equation*}
$$

(Idea: use a Riemannian metric, and set $\left.h(p, \xi)=\exp _{p, 0} L_{p}(0, \xi)\right)$. Then $\forall p \in X,\left(h^{*} \omega_{1}\right)_{p}=\left(\omega_{0}\right)_{p}$, so we can use local Moser for $h^{*} \omega_{1}$ and ω_{0}. We therefore obtain $U_{0}, U_{1} \supset X$ and a local symplectomorphism $f:\left(U_{0}, \omega_{0}\right) \xrightarrow{\sim}$ $\left(U_{1}, h^{*} \omega_{1}\right)$. Setting $\phi=\psi \circ h \circ f$ gives us the desired result.

To prove the claim, decompose $T_{(p, 0)} N_{0}=T_{p} X \oplus T_{p}^{*} X$, with a chosen basis for $T_{p} X$ and the dual basis for $T_{p}^{*} X$. We have two symplectic forms on this space, namely $\omega_{0}=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right), \omega=\left(\begin{array}{cc}0 & -B^{t} \\ B & C\end{array}\right)$. That is, we know that

$$
\begin{equation*}
\omega_{0}\left(\left(v_{1}, \xi_{1}\right),\left(v_{2}, \xi_{2}\right)\right)=\xi_{1}\left(v_{2}\right)-\xi_{2}\left(v_{1}\right) \tag{7}
\end{equation*}
$$

and $\left.\omega\right|_{T_{p} X}=0$. We want to find a matrix $L=\left(\begin{array}{cc}I & * \\ 0 & *\end{array}\right)$ s.t. $L^{t} \omega L=\omega_{0}$. Setting

$$
L=\left(\begin{array}{cc}
I & -\frac{1}{2} B^{-1} C B^{-t} \tag{8}\\
0 & B^{-t}
\end{array}\right)
$$

gives the desired matrix: furthermore, the construction doesn't depend on the choice of basis.

