18.966 - Homework 2 - Solutions.

1. Equip $\mathbb{R}^{7}=\operatorname{Im} \mathbb{O}=\{a+b e, \operatorname{Re} a=0\}$ with the cross-product $x \times y=\operatorname{Im}(x y)$. By definition of the octonion product, if $x, y \in \operatorname{Im} \mathbb{O}$ then $\operatorname{Re}(x y)=-\langle x, y\rangle$ (the usual Euclidean scalar product on \mathbb{R}^{7}). Indeed,

$$
\operatorname{Re}\left((a+b e)\left(a^{\prime}+b^{\prime} e\right)\right)=\operatorname{Re}\left(a a^{\prime}-\overline{b^{\prime}} b\right)=\operatorname{Re}\left(-a \overline{a^{\prime}}-\overline{b^{\prime}} b\right)=-\left\langle a, a^{\prime}\right\rangle-\left\langle b, b^{\prime}\right\rangle .
$$

Therefore $\|x \times y\|=\|\operatorname{Im}(x y)\| \leq\|x y\|=\|x\|\|y\|$, with equality iff $x \perp y$. Let $x \in S^{6} \subset \mathbb{R}^{7}$, and let $y \in T_{x} S^{6} \simeq x^{\perp} \subset \mathbb{R}^{7}$. Then we define

$$
J_{x}(y)=x \times y
$$

Note that, since $y \perp x$, we have $J_{x}(y)=x \times y=x y+\langle x, y\rangle=x y$.
We have to prove that J_{x} maps $T_{x} S^{6}$ to itself, and that $J_{x}^{2}=-\mathrm{Id}$. For this purpose, let $x=a+b e$ be a unit imaginary octonion $(\bar{a}=-a)$ and let $y=c+d e$ be any octonion: then

$$
\begin{aligned}
x(x y) & =a(a c-\bar{d} b)-(\bar{a} \bar{d}+c \bar{b}) b+(d a+b \bar{c}) a e+b(\bar{c} \bar{a}-\bar{b} d) e \\
& =-|a|^{2} c-(a+\bar{a}) \bar{d} b-c|b|^{2}-d|a|^{2} e+b \bar{c}(a+\bar{a}) e-|b|^{2} d e \\
& =-\left(|a|^{2}+|b|^{2}\right)(c+d e)=-\|x\|^{2} y=-y .
\end{aligned}
$$

If $y \in T_{x} S^{6}$, i.e. y is imaginary and $y \perp x$, then $\langle x, x y\rangle=-\operatorname{Re}(x(x y))=\operatorname{Re}(y)=0$, so J_{x} maps $T_{x} S^{6}$ to itself, and $J_{x}^{2}=-\mathrm{Id}$.
2. a) Any vector in $J L$ is of the form $J u$, with $u \in L$. Given $u, v \in L$, we have $\Omega(J u, J v)=\Omega(u, v)=0$ (since J is Ω-compatible and L is Lagrangian), and $\operatorname{dim} J L=$ $\operatorname{dim} L=\frac{1}{2} \operatorname{dim} V$, so $J L$ is Lagrangian. Also, $\forall u, v \in L, g(u, J v)=\Omega(u, J(J v))=$ $-\Omega(u, v)=0$, so any vector in L is orthogonal to any vector in $J L$, i.e. $J L \subset L^{\perp}$. Since $\operatorname{dim} J L=\frac{1}{2} \operatorname{dim} V=\operatorname{dim} L^{\perp}$, we conclude that $J L=L^{\perp}$.
b) Assume J is Ω-compatible, and let L be a Lagrangian subspace of (V, Ω). Choose a g-orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of L, and let $f_{i}=J e_{i} \in J L$. Then $\Omega\left(e_{i}, e_{j}\right)=0$ since L is Lagrangian, and $\Omega\left(f_{i}, f_{j}\right)=0$ since $J L$ is Lagrangian. Moreover, $\Omega\left(e_{i}, f_{j}\right)=\Omega\left(e_{i}, J e_{j}\right)=$ $g\left(e_{i}, e_{j}\right)=\delta_{i j}$. Hence we have a standard basis with $f_{i}=J e_{i}$.

Conversely, if there exists a standard basis with $f_{i}=J e_{i}$, then $\Omega\left(e_{i}, J e_{j}\right)=\Omega\left(f_{i}, J f_{j}\right)=$ $\delta_{i j}$, and $\Omega\left(e_{i}, J f_{j}\right)=\Omega\left(f_{i}, J e_{j}\right)=0$, so the bilinear form $g=\Omega(\cdot, J \cdot)$ is symmetric and definite positive (and ($\left.e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right)$ is an orthonormal basis). Hence J is Ω-compatible.
3. a) Recall that, for any vector $u \in T_{x} M, \nabla s(u)$ is the vertical component of $d s_{x}(u) \in$ $T_{s(x)} L$ (while the horizontal component of $d s_{x}(u)$ is the horizontal lift of u). Therefore the assumption that ∇s is surjective at every point of $Z=s^{-1}(0)$ means that the graph Γ_{s} of s is transverse to the zero section $\Gamma_{0} \subset L$, and hence that $Z=\Gamma_{s} \cap \Gamma_{0}$ is smooth. Moreover, at every point x of Z we have $T_{x} Z=T_{x} \Gamma_{s} \cap T_{x} \Gamma_{0}$, i.e. the tangent space to Z is the set of all vectors $v \in T_{x} M$ such that $d s_{x}(v)$ is tangent to the zero section, i.e. horizontal, i.e. $\nabla s(v)=0$. Hence $T Z=\operatorname{Ker} \nabla s$.
b) Let $x \in Z$, and assume that $\left|\partial s_{x}\right|>\left|\bar{\partial} s_{x}\right|$. We want to show that the restriction of $T_{x} Z=\operatorname{Ker} \nabla s_{x}$ is a symplectic subspace of $\left(T_{x} M, \omega_{x}\right)$. This is a linear algebra question involving the linear map $\nabla s_{x}: T_{x} M \rightarrow L_{x}$.

Use a unit length element in L_{x} to identify the fiber L_{x} (a rank 1 complex vector space with a Hermitian norm) with \mathbb{C} equipped with the standard norm $|\cdot|$. Then ∇s_{x} becomes a linear map $T_{x} M \rightarrow \mathbb{C}$.

Method 1: Let $g: T_{x} M \times T_{x} M \rightarrow \mathbb{R}$ be the metric induced by ω and J, and consider the linear form $\partial s_{x}: T_{x} M \rightarrow \mathbb{C}$. There exists a unique vector $u \in T_{x} M$ such that $\operatorname{Re} \partial s_{x}=$ $g(u, \cdot)$; because $\partial s_{x} \circ J=i \partial s_{x}$, we have $\operatorname{Im} \partial s_{x}=g(-J u, \cdot)$. Similarly, there exists a unique $v \in T_{x} M$ such that $\operatorname{Re} \bar{\partial} s_{x}=g(v, \cdot)$, and $\operatorname{Im} \bar{\partial} s_{x}=g(J v, \cdot)$. The assumption $\left|\partial s_{x}\right|>\left|\bar{\partial} s_{x}\right|$ is equivalent to the property $g(u, u)>g(v, v)$.

Since $\nabla s_{x}=\partial s_{x}+\bar{\partial} s_{x}$, we have $\operatorname{Re} \nabla s_{x}=g(u+v, \cdot)=\omega(-J u-J v, \cdot)$, and $\operatorname{Im} \nabla s_{x}=$ $g(-J u+J v, \cdot)=\omega(-u+v, \cdot)$. Hence, $E=T_{x} Z=\operatorname{Ker} \nabla s_{x}$ is the set of all tangent vectors that are symplectically orthogonal to $-J u-J v$ and $-u+v$, i.e. $E^{\omega}=\operatorname{span}(-J u-J v,-u+v)$. Recall that $E \subset\left(T_{x} M, \omega\right)$ is a symplectic subspace $\Leftrightarrow T_{x} M=E \oplus E^{\omega} \Leftrightarrow E^{\omega}$ is a symplectic subspace. So we just need to check that the restriction of ω to E^{ω} is non-degenerate. Since

$$
\begin{aligned}
\omega(-u+v,-J u-J v) & =\omega(u, J u)-\omega(v, J u)+\omega(u, J v)-\omega(v, J v) \\
& =g(u, u)-g(v, u)+g(u, v)-g(v, v)=g(u, u)-g(v, v)>0
\end{aligned}
$$

we conclude that Z is a symplectic submanifold of (M, ω).
Method 2: use the result of Problem 2 to identify $\left(T_{x} M, \omega, J, g\right)$ with $\left(\mathbb{C}^{n}, \omega_{0}, i,|\cdot|\right)$. Then $\partial s_{x}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ can be written as $\partial s_{x}\left(u_{1}, \ldots, u_{n}\right)=\sum \alpha_{j} u_{j}$ for some constants $\alpha_{i} \in \mathbb{C}$, and similarly $\bar{\partial} s_{x}\left(u_{1}, \ldots, u_{n}\right)=\sum \beta_{j} \bar{u}_{j}$. In order to prove that $T_{x} Z$ is a symplectic subspace, we consider a non-zero vector $u=\left(u_{1}, \ldots, u_{n}\right) \in T_{x} Z$, and need to show that there exists $v \in T_{x} Z$ such that $\omega(u, v) \neq 0$. We look for $v=\left(v_{1}, \ldots, v_{n}\right)$ of the form $v_{j}=i u_{j}+\lambda \bar{\alpha}_{j}-\bar{\lambda} \beta_{j}$, where $\lambda \in \mathbb{C}$. The condition
$\nabla s(v)=\sum\left(i u_{j} \alpha_{j}+\lambda \bar{\alpha}_{j} \alpha_{j}-\bar{\lambda} \beta_{j} \alpha_{j}\right)+\left(-i \bar{u}_{j} \beta_{j}+\bar{\lambda} \alpha_{j} \beta_{j}-\lambda \bar{\beta}_{j} \beta_{j}\right)=\nabla s(J u)+\lambda\left(|\alpha|^{2}-|\beta|^{2}\right)=0$
gives $\lambda=-\frac{\nabla s(J u)}{\left.|\alpha|^{2}-|\beta|^{2}\right)}$ (note that $|\alpha|^{2}-|\beta|^{2} \neq 0$ since $|\alpha|=\left|\partial s_{x}\right|>\left|\bar{\partial} s_{x}\right|=|\beta|$).
On the other hand, since $\nabla s(u)=\sum u_{j} \alpha_{j}+\bar{u}_{j} \beta_{j}=0$, we have

$$
\begin{aligned}
\omega(u, \lambda \bar{\alpha}-\bar{\lambda} \beta) & =\operatorname{Im}\left(\sum \bar{u}_{j}\left(\lambda \bar{\alpha}_{j}-\bar{\lambda} \beta_{j}\right)\right. \\
& =\operatorname{Im}\left(\lambda \sum \bar{u}_{j} \bar{\alpha}_{j}\right)-\operatorname{Im}\left(\bar{\lambda} \sum \bar{u}_{j} \beta_{j}\right) \\
& =\operatorname{Im}\left(\lambda \sum \bar{u}_{j} \bar{\alpha}_{j}\right)+\operatorname{Im}\left(\bar{\lambda} \sum u_{j} \alpha_{j}\right)=0 .
\end{aligned}
$$

Hence $\omega(u, v)=\omega(u, J u)=|u|^{2} \neq 0$.

