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18.966 – Homework 1 – Solutions.


1. Let E be a Lagrangian subspace of a symplectic vector space (V, Ω), and let e1, . . . , en 

be a basis of E. We proceed by induction, assuming we have constructed f1, . . . , fk−1 ∈ V 
such that the family (e1, . . . , en, f1, . . . , fk−1) is free and Ω(ei, fi) = 1, Ω(ei, fj) = 0 for i 6= j, 
and Ω(fi, fj) = 0. 

Because (e1, . . . , en, f1, . . . , fk−1) is free, there exists a (non-unique) linear form τ ∈ V ∗ 

such that τ(ei) = 0 for i 6 k, τ(fi) = 0 for i < k, and τ(ek) = 1. Using the fact that Ω is = 
non-degenerate (induces an isomorphism between V and V ∗), there exists fk ∈ V such that 
Ω(·, fk) = τ . 

Let us check that the family (e1, . . . , en, f1, . . . , fk) is free. Indeed, if v = 
�n

i=1 λiei + 
�k	 � 

i=1 µifi = 0, then Ω(ei, v) = µi = 0 for all 1 ≤ i ≤ k, and v = λiei = 0; since the (ei) 
form a basis of E, we also have λi = 0 for all i. Moreover, Ω(ei, fk) and Ω(fi, fk) are as 
prescribed. 

Therefore, by induction we can construct f1, . . . , fn such that (e1, . . . , en, f1, . . . , fn) is a 
basis of V (it’s a free family and dimV = 2n) and the expression of Ω in this basis is the 
standard one. 

2. S2 is an orientable surface and hence carries a symplectic structure (its standard area 
form, for example); however, for n ≥ 2, the compact manifold S2n has H2(S2n , R) = 0, so it 
cannot be symplectic (for any closed 2-form, 

S2n ω
n = [ω]∪n · [S2n] = 0). 

The torus T 2n always carries a symplectic structure, induced from the standard sym
plectic structure of R2n (which is preserved by translations). (On T 2n there are coordinates 
x1, . . . , xn, y1, . . . , yn ∈ R/Z = S1, the symplectic form can be written as ω = 

� 

dxi ∧ dyi.) 
Alternatively, T 2n is the product of n copies of T 2 which is an orientable surface. (Recall a 
product of symplectic manifolds is symplectic.) 

3.	 a) � 1 � 

∂ ∂

Γ∗ω = ωγt(s)(
 γt(s)) ds dt 

[0,1]×S1 0 S1 ∂t ∂s 
γt(s), 

� 1 � 

= ωγt(s)(Xt(γt(s)), γ̇t(s)) ds dt 
0 S1 

� 1 � � 1 

= iXt ω dt = 〈[iXt ω], [γt]〉dt. 
0 γt 0 

Observing that γt and γ are mutually homologous (the restriction of Γ to [0, t] × S1 
� 1

provides a bounding 2-chain), the r.h.s. is equal to 
0 〈[iXt ω], [γ]〉dt = 〈Flux(ρt), [γ]〉. 

b) Assume φ : (x, ξ) 7→ (x, ξ + 1) is generated by a time-dependent Hamiltonian vector 
field Xt (i.e., φ = ρ1, and iXt ω = dHt for some HamiltonianHt : M → R). Then Flux(ρt) = 0 
by definition ([iXt ω] = 0 for all t). 

Recall that ω = dα, where α = ξdx, and consider the loop γ : S1 → T ∗S1 defined by 
γ(x) = (x, 0), and its image γ1 = φ(γ) given by γ1(x) = (x, 1). recall that by (1) and Stokes’ 
theorem we have 

〈Flux(ρt), [γ]〉 = Γ∗(dα) = γ1 
∗α − γ0 

∗α, 
[0,1]×S1 S1 S1 
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which implies that 
γ1 
α = 

γ0 
α, in contradiction with the direct calculation ( 

γ0 
ξ dx = 0 

and 
γ1 
ξ dx = 2π). Therefore φ is not Hamiltonian. 

4. a) ωt = φ∗ω is a symplectic form, and d ωt is an exact 1-form since it equals φ∗ ω) = t dt t (LYt 

d(φ∗ 

t (iYt ω)) where Yt is the vector field generating φt. Hence following Moser’s argument we 
can find a 1-form αt such that dαt = − d ωt (in this case we can e.g. take αt = −φ∗ 

t (iYt ω)) 
dt

−(φ−1 

Let ψt = φt ◦ ρt, where ρt is the isotopy generated by the vector fields Xt. Then ψt 
∗ω = 

ρ∗(φ∗ω) = ρ∗ωt, and 

and a vector field Xt such that αt = iXt ωt (for example Xt = t )∗(Yt)). 

t t t 

d(ψt 
∗ω) d � dωt � 

= (ρ∗ωt) = ρ∗ LXt ωt + = 0,
dt dt t t dt 

so ψt is a family of symplectomorphisms. Moreover, if we assume that the vector field 
Xt is tangent to Σ0 for all t, then by integration of the differential equation ρ0(p) = p, 
d ρt(p) = Xt(ρt(p)) we obtain that ρt maps Σ0 onto itself. Therefore, ψt(Σ0) = φt(Σ0) = Σt.dt

(Note that the flow is well-defined because M and Σ0 are compact.) 

b) Consider a point p ∈ Σ0: because the symplectic orthogonal to Np
ωΣ0 is exactly TpΣ0, 

the vector field X is tangent to Σ0 at p (i.e. Xp ∈ TpΣ0) if and only if ωp(Xp, v) = 0 
∀v ∈ Np

ωΣ0, i.e. if and only if iXω vanishes on Np
ωΣ0. 

c) Let X be a neighborhood of the zero section in NωΣ0 = {(p, v), p ∈ Σ0, v ∈ Np
ωΣ0}. 

Using e.g. the exponential map for an arbitrary metric we can construct a smooth map 
θ : X → M such that ∀p ∈ Σ0, θ(p, 0) = p, and ∀v ∈ Np

ωΣ0, dθ(p,0)(0, v) = v. Consider a 
point (p, 0) of the zero section in X: we have T(p,0)X = TpΣ0 ⊕Np

ωΣ0, and by construction 
d(p,0)θ(u, v) = u + v for all u ∈ TpΣ0 and v ∈ Np

ωΣ0. However, TpΣ0 is a symplectic subspace 
of the vector space (TpM, ω), so TpM = TpΣ0 ⊕ Np

ωΣ0, and the differential of θ at p is an 
isomorphism. Therefore θ is a local diffeomorphism, i.e. it induces a diffeomorphism over a 
neighborhood U of the zero section. 

At any point p ∈ Σ0, the restriction to Np
ωΣ0 of the 1-form α ∈ Ω1(M) defines a linear 

form αp : Np
ωΣ0 → R. Let h : NωΣ0 → R be the function defined by h(p, v) = αp(v). Finally, 

let χ : NωΣ0 → [0, 1] be a smooth cut-off function equal to 1 over a neighborhood of the zero 
section and with support contained in U , and let h̃(p, v) = χ(p, v)h(p, v). By construction, 
d(p,0) h̃(0, v) = d(p,0)h(0, v) = αp(v). 

Let f : M → R be the unique smooth function with support contained in θ(U) and such 
that f(θ(x)) = h̃(x) for all x ∈ U . Then by construction, for every p ∈ Σ0 and v ∈ Np

ωΣ0, 

dpf(v) = d(p,0) h̃ ◦ (d(p,0)θ)
−1(v) = d(p,0) h̃(0, v) = αp(v), i.e. the restriction of df to Np

ωΣ0 is 
equal to that of α. 

d) Let αt be a smooth family of 1-forms such that dαt = − d ωt (for example those 
dt

constructed in (a)), and let ft be the functions constructed in (c). Then α̃t = αt − dft also 
satisfies the property that dα̃t = − d ωt, and additionally the restriction of α̃t to Nωt Σ0 (the 

dt p 

orthogonal to TpΣ0 with respect to ωt) vanishes at every point of Σ0. Therefore the vector 
field Xt such that iXt ωt = α̃t is tangent to Σ0 at every point of Σ0 (by the result of (b)), and 
LXt ωt = − d ωt. By part (a) this completes the proof. 

dt
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