18.966 - Homework 1 - Solutions.

1. Let E be a Lagrangian subspace of a symplectic vector space (V, Ω), and let e_{1}, \ldots, e_{n} be a basis of E. We proceed by induction, assuming we have constructed $f_{1}, \ldots, f_{k-1} \in V$ such that the family $\left(e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{k-1}\right)$ is free and $\Omega\left(e_{i}, f_{i}\right)=1, \Omega\left(e_{i}, f_{j}\right)=0$ for $i \neq j$, and $\Omega\left(f_{i}, f_{j}\right)=0$.

Because ($e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{k-1}$) is free, there exists a (non-unique) linear form $\tau \in V^{*}$ such that $\tau\left(e_{i}\right)=0$ for $i \neq k, \tau\left(f_{i}\right)=0$ for $i<k$, and $\tau\left(e_{k}\right)=1$. Using the fact that Ω is non-degenerate (induces an isomorphism between V and V^{*}), there exists $f_{k} \in V$ such that $\Omega\left(\cdot, f_{k}\right)=\tau$.

Let us check that the family $\left(e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{k}\right)$ is free. Indeed, if $v=\sum_{i=1}^{n} \lambda_{i} e_{i}+$ $\sum_{i=1}^{k} \mu_{i} f_{i}=0$, then $\Omega\left(e_{i}, v\right)=\mu_{i}=0$ for all $1 \leq i \leq k$, and $v=\sum \lambda_{i} e_{i}=0$; since the $\left(e_{i}\right)$ form a basis of E, we also have $\lambda_{i}=0$ for all i. Moreover, $\Omega\left(e_{i}, f_{k}\right)$ and $\Omega\left(f_{i}, f_{k}\right)$ are as prescribed.

Therefore, by induction we can construct f_{1}, \ldots, f_{n} such that $\left(e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right)$ is a basis of V (it's a free family and $\operatorname{dim} V=2 n$) and the expression of Ω in this basis is the standard one.
2. S^{2} is an orientable surface and hence carries a symplectic structure (its standard area form, for example); however, for $n \geq 2$, the compact manifold $S^{2 n}$ has $H^{2}\left(S^{2 n}, \mathbb{R}\right)=0$, so it cannot be symplectic (for any closed 2 -form, $\int_{S^{2 n}} \omega^{n}=[\omega]^{\cup n} \cdot\left[S^{2 n}\right]=0$).

The torus $T^{2 n}$ always carries a symplectic structure, induced from the standard symplectic structure of $\mathbb{R}^{2 n}$ (which is preserved by translations). (On $T^{2 n}$ there are coordinates $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R} / \mathbb{Z}=S^{1}$, the symplectic form can be written as $\omega=\sum d x_{i} \wedge d y_{i}$.) Alternatively, $T^{2 n}$ is the product of n copies of T^{2} which is an orientable surface. (Recall a product of symplectic manifolds is symplectic.)
3. a)

$$
\begin{aligned}
\iint_{[0,1] \times S^{1}} \Gamma^{*} \omega & =\int_{0}^{1} \int_{S^{1}} \omega_{\gamma_{t}(s)}\left(\frac{\partial}{\partial t} \gamma_{t}(s), \frac{\partial}{\partial s} \gamma_{t}(s)\right) d s d t \\
& =\int_{0}^{1} \int_{S^{1}} \omega_{\gamma_{t}(s)}\left(X_{t}\left(\gamma_{t}(s)\right), \dot{\gamma}_{t}(s)\right) d s d t \\
& =\int_{0}^{1}\left(\int_{\gamma_{t}} i_{X_{t}} \omega\right) d t=\int_{0}^{1}\left\langle\left[i_{X_{t}} \omega\right],\left[\gamma_{t}\right]\right\rangle d t
\end{aligned}
$$

Observing that γ_{t} and γ are mutually homologous (the restriction of Γ to $[0, t] \times S^{1}$ provides a bounding 2-chain), the r.h.s. is equal to $\int_{0}^{1}\left\langle\left[i_{X_{t}} \omega\right],[\gamma]\right\rangle d t=\left\langle\operatorname{Flux}\left(\rho_{t}\right),[\gamma]\right\rangle$.
b) Assume $\phi:(x, \xi) \mapsto(x, \xi+1)$ is generated by a time-dependent Hamiltonian vector field X_{t} (i.e., $\phi=\rho_{1}$, and $i_{X_{t}} \omega=d H_{t}$ for some Hamiltonian $H_{t}: M \rightarrow \mathbb{R}$). Then Flux $\left(\rho_{t}\right)=0$ by definition $\left(\left[i_{X_{t}} \omega\right]=0\right.$ for all $\left.t\right)$.

Recall that $\omega=d \alpha$, where $\alpha=\xi d x$, and consider the loop $\gamma: S^{1} \rightarrow T^{*} S^{1}$ defined by $\gamma(x)=(x, 0)$, and its image $\gamma_{1}=\phi(\gamma)$ given by $\gamma_{1}(x)=(x, 1)$. recall that by (1) and Stokes' theorem we have

$$
\left\langle\operatorname{Flux}\left(\rho_{t}\right),[\gamma]\right\rangle=\iint_{[0,1] \times S^{1}} \Gamma^{*}(d \alpha)=\int_{S^{1}} \gamma_{1}^{*} \alpha-\int_{S^{1}} \gamma_{0}^{*} \alpha,
$$

which implies that $\int_{\gamma_{1}} \alpha=\int_{\gamma_{0}} \alpha$, in contradiction with the direct calculation $\left(\int_{\gamma_{0}} \xi d x=0\right.$ and $\left.\int_{\gamma_{1}} \xi d x=2 \pi\right)$. Therefore ϕ is not Hamiltonian.
4. a) $\omega_{t}=\phi_{t}^{*} \omega$ is a symplectic form, and $\frac{d}{d t} \omega_{t}$ is an exact 1-form since it equals $\phi_{t}^{*}\left(L_{Y_{t}} \omega\right)=$ $d\left(\phi_{t}^{*}\left(i_{Y_{t}} \omega\right)\right)$ where Y_{t} is the vector field generating ϕ_{t}. Hence following Moser's argument we can find a 1-form α_{t} such that $d \alpha_{t}=-\frac{d}{d t} \omega_{t}$ (in this case we can e.g. take $\alpha_{t}=-\phi_{t}^{*}\left(i_{Y_{t}} \omega\right)$) and a vector field X_{t} such that $\alpha_{t}=i_{X_{t}} \omega_{t}$ (for example $\left.X_{t}=-\left(\phi_{t}^{-1}\right)_{*}\left(Y_{t}\right)\right)$.

Let $\psi_{t}=\phi_{t} \circ \rho_{t}$, where ρ_{t} is the isotopy generated by the vector fields X_{t}. Then $\psi_{t}^{*} \omega=$ $\rho_{t}^{*}\left(\phi_{t}^{*} \omega\right)=\rho_{t}^{*} \omega_{t}$, and

$$
\frac{d\left(\psi_{t}^{*} \omega\right)}{d t}=\frac{d}{d t}\left(\rho_{t}^{*} \omega_{t}\right)=\rho_{t}^{*}\left(L_{X_{t}} \omega_{t}+\frac{d \omega_{t}}{d t}\right)=0
$$

so ψ_{t} is a family of symplectomorphisms. Moreover, if we assume that the vector field X_{t} is tangent to Σ_{0} for all t, then by integration of the differential equation $\rho_{0}(p)=p$, $\frac{d}{d t} \rho_{t}(p)=X_{t}\left(\rho_{t}(p)\right)$ we obtain that ρ_{t} maps Σ_{0} onto itself. Therefore, $\psi_{t}\left(\Sigma_{0}\right)=\phi_{t}\left(\Sigma_{0}\right)=\Sigma_{t}$. (Note that the flow is well-defined because M and Σ_{0} are compact.)
b) Consider a point $p \in \Sigma_{0}$: because the symplectic orthogonal to $N_{p}^{\omega} \Sigma_{0}$ is exactly $T_{p} \Sigma_{0}$, the vector field X is tangent to Σ_{0} at p (i.e. $X_{p} \in T_{p} \Sigma_{0}$) if and only if $\omega_{p}\left(X_{p}, v\right)=0$ $\forall v \in N_{p}^{\omega} \Sigma_{0}$, i.e. if and only if $i_{X} \omega$ vanishes on $N_{p}^{\omega} \Sigma_{0}$.
c) Let X be a neighborhood of the zero section in $N^{\omega} \Sigma_{0}=\left\{(p, v), p \in \Sigma_{0}, v \in N_{p}^{\omega} \Sigma_{0}\right\}$. Using e.g. the exponential map for an arbitrary metric we can construct a smooth map $\theta: X \rightarrow M$ such that $\forall p \in \Sigma_{0}, \theta(p, 0)=p$, and $\forall v \in N_{p}^{\omega} \Sigma_{0}, d \theta_{(p, 0)}(0, v)=v$. Consider a point $(p, 0)$ of the zero section in X : we have $T_{(p, 0)} X=T_{p} \Sigma_{0} \oplus N_{p}^{\omega} \Sigma_{0}$, and by construction $d_{(p, 0)} \theta(u, v)=u+v$ for all $u \in T_{p} \Sigma_{0}$ and $v \in N_{p}^{\omega} \Sigma_{0}$. However, $T_{p} \Sigma_{0}$ is a symplectic subspace of the vector space $\left(T_{p} M, \omega\right)$, so $T_{p} M=T_{p} \Sigma_{0} \oplus N_{p}^{\omega} \Sigma_{0}$, and the differential of θ at p is an isomorphism. Therefore θ is a local diffeomorphism, i.e. it induces a diffeomorphism over a neighborhood U of the zero section.

At any point $p \in \Sigma_{0}$, the restriction to $N_{p}^{\omega} \Sigma_{0}$ of the 1 -form $\alpha \in \Omega^{1}(M)$ defines a linear form $\alpha_{p}: N_{p}^{\omega} \Sigma_{0} \rightarrow \mathbb{R}$. Let $h: N^{\omega} \Sigma_{0} \rightarrow \mathbb{R}$ be the function defined by $h(p, v)=\alpha_{p}(v)$. Finally, let $\chi: N^{\omega} \Sigma_{0} \rightarrow[0,1]$ be a smooth cut-off function equal to 1 over a neighborhood of the zero section and with support contained in U, and let $\tilde{h}(p, v)=\chi(p, v) h(p, v)$. By construction, $d_{(p, 0)} \tilde{h}(0, v)=d_{(p, 0)} h(0, v)=\alpha_{p}(v)$.

Let $f: M \rightarrow \mathbb{R}$ be the unique smooth function with support contained in $\theta(U)$ and such that $f(\theta(x))=\tilde{h}(x)$ for all $x \in U$. Then by construction, for every $p \in \Sigma_{0}$ and $v \in N_{p}^{\omega} \Sigma_{0}$, $d_{p} f(v)=d_{(p, 0)} \tilde{h} \circ\left(d_{(p, 0)} \theta\right)^{-1}(v)=d_{(p, 0)} \tilde{h}(0, v)=\alpha_{p}(v)$, i.e. the restriction of $d f$ to $N_{p}^{\omega} \Sigma_{0}$ is equal to that of α.
d) Let α_{t} be a smooth family of 1 -forms such that $d \alpha_{t}=-\frac{d}{d t} \omega_{t}$ (for example those constructed in (a)), and let f_{t} be the functions constructed in (c). Then $\tilde{\alpha}_{t}=\alpha_{t}-d f_{t}$ also satisfies the property that $d \tilde{\alpha}_{t}=-\frac{d}{d t} \omega_{t}$, and additionally the restriction of $\tilde{\alpha}_{t}$ to $N_{p}^{\omega_{t}} \Sigma_{0}$ (the orthogonal to $T_{p} \Sigma_{0}$ with respect to ω_{t}) vanishes at every point of Σ_{0}. Therefore the vector field X_{t} such that $i_{X_{t}} \omega_{t}=\tilde{\alpha}_{t}$ is tangent to Σ_{0} at every point of Σ_{0} (by the result of (b)), and $L_{X_{t}} \omega_{t}=-\frac{d}{d t} \omega_{t}$. By part (a) this completes the proof.

