18.966 - Homework 2 - due Tuesday March 20, 2007.

1. Show that the sphere S^{6} carries a natural almost-complex structure, induced by a vector cross-product on \mathbb{R}^{7}.

Hint: view \mathbb{R}^{7} as the space of imaginary octonions. Octonions are the non-commutative, non-associative normed division algebra structure on $\mathbb{R}^{8}=\mathbb{H} \oplus e \mathbb{H}$ with product given by the formula

$$
(a+b e)\left(a^{\prime}+b^{\prime} e\right)=\left(a a^{\prime}-\overline{b^{\prime}} b\right)+\left(b^{\prime} a+b \overline{a^{\prime}}\right) e, \quad \forall a, b, a^{\prime}, b^{\prime} \in \mathbb{H}
$$

($\overline{a^{\prime}}$ is the conjugate of a^{\prime}, i.e. $\overline{x+y i+z j+t k}=x-y i-z j-t k$). (You may use the fact that $\left\|(a+b e)\left(a^{\prime}+b^{\prime} e\right)\right\|=\|a+b e\|\left\|a^{\prime}+b^{\prime} e\right\|$, where $\|\cdot\|$ is the usual Euclidean norm on \mathbb{R}^{8}.)
2. Let (V, Ω) be a symplectic vector space of dimension $2 n$, and let $J: V \rightarrow V, J^{2}=-\mathrm{Id}$ be a complex structure on V.
a) Prove that, if J is Ω-compatible and L is a Lagrangian subspace of (V, Ω), then $J L$ is also Lagrangian and $J L=L^{\perp}$, where L^{\perp} is the orthogonal to L with respect to the positive inner product $g(u, v)=\Omega(u, J v)$.
b) Deduce that J is Ω-compatible if and only if there exists a symplectic basis for V of the form

$$
e_{1}, e_{2}, \ldots, e_{n}, f_{1}=J e_{1}, f_{2}=J e_{2}, \ldots, f_{n}=J e_{n}
$$

with $\Omega\left(e_{i}, e_{j}\right)=\Omega\left(f_{i}, f_{j}\right)=0$ and $\Omega\left(e_{i}, f_{j}\right)=\delta_{i j}$.
3. Let (M, ω, J, g) be a symplectic manifold equipped with a compatible almost-complex structure and the corresponding Riemannian metric, and let L be a complex line bundle over M equipped with a Hermitian metric $|\cdot|$ and a Hermitian connection ∇. Given a section s of L, define $\partial s, \bar{\partial} s \in \Omega^{1}(M, L)$ by the formulas $\partial s(v)=\frac{1}{2}(\nabla s(v)-i \nabla s(J v))$ and $\bar{\partial} s(v)=\frac{1}{2}(\nabla s(v)+i \nabla s(J v))$.

It is easy to check that, $\forall x \in M,(\partial s)_{x}: T_{x} M \rightarrow L_{x}$ is \mathbb{C}-linear, $(\bar{\partial} s)_{x}$ is \mathbb{C}-antilinear, and $\nabla s=\partial s+\bar{\partial} s$. (∂s and $\bar{\partial} s$ are respectively the type $(1,0)$ and $(0,1)$ parts of $\nabla s)$.
a) Prove that if $(\nabla s)_{x}: T_{x} M \rightarrow L_{x}$ is surjective at every point x of $Z=s^{-1}(0)$, then Z is a smooth submanifold of M, and its tangent space is given by $T_{x} Z=\operatorname{Ker}(\nabla s)_{x}$.
b) Prove that, if $|\partial s|>|\bar{\partial} s|$ at every point of Z, then $Z=s^{-1}(0)$ is a symplectic submanifold of M. (Here $|\cdot|$ is the natural Hermitian norm on $T_{x}^{*} M \otimes L_{x}=\operatorname{Hom}\left(T_{x} M, L_{x}\right)$ induced by g on $T M$ and the Hermitian metric on L).

Hint: given a point $x \in Z$, and choosing an identification between the fiber of L at x and \mathbb{C} equipped with the standard norm, things essentially reduce to a linear algebra problem for the linear map $(\nabla s)_{x}=(\partial s)_{x}+(\bar{\partial} s)_{x}: T_{x} M \rightarrow \mathbb{C}$.

