MIT OpenCourseWare
http://ocw.mit.edu

18.950 Differential Geometry

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

18.950 Homework 5

1. (10 points) Let f be a hypersurface patch. Suppose that f lies in the half-plane $\left\{y_{n+1} \geq 0\right\} \subset \mathbb{R}^{n+1}$, and that f is tangent to the hyperplane $\left\{y_{n+1}=0\right\}$ at $x=0$. Prove that then, the principal curvatures at $x=0$ satisfy $\lambda_{i} \lambda_{j} \geq 0$ for all i, j.
2. (3 points) Let f be a hypersurface patch of the form $f(x)=(x, \phi(x))$ for some $\phi: U \rightarrow \mathbb{R}$. Suppose that at the origin $x=0$, both ϕ and $D \phi$ vanish. Compute the Christoffel symbols and their (first order) derivatives at that point.
3. (7 points) Let $f: U \rightarrow \mathbb{R}^{3}$ be a surface patch. Define the parallel surface at distance ϵ to be

$$
\tilde{f}(s, t)=f(s, t)+\epsilon \cdot \nu(s, t)
$$

where ν is the Gauss normal vector. Show that the principal curvatures of f and \tilde{f} are related by $\tilde{\lambda}_{i}=\lambda_{i} /\left(1-\epsilon \lambda_{i}\right)(i=1,2)$. You may assume that ϵ is as small as needed for the argument.

