MIT OpenCourseWare
http://ocw.mit.edu

18.950 Differential Geometry

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

18.950 Homework 4

Problem 1. Prove that $\Lambda^{2}(L)$ vanishes if and only if L has rank ≤ 1.
Problem 2. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an invertible linear map. Prove that with a suitable choice of basis of $\Lambda^{2}\left(\mathbb{R}^{3}\right)$, the map $\Lambda^{2}(L): \Lambda^{2}\left(\mathbb{R}^{3}\right) \rightarrow \Lambda^{2}\left(\mathbb{R}^{3}\right)$ turns into $\left(L^{-1}\right)^{t r} \operatorname{det}(L)$.

Problem 3. (2 points) Determine the first and second fundamental form, as well as the principal curvatures, of the cylinder $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(s, t)=$ $(s, \cos (t), \sin (t))$.

Problem 4. (4 points) Suppose that f parametrizes a piece of the standard sphere, so that the unit normal vector at each point is $\nu(x)=-f(x)$. From this fact, deduce that all principal curvatures are equal to +1 .

Problem 5. (6 points) Define the third fundamental form of a hypersurface at a point x to be

$$
I I I_{x}(X, Y)=\langle K X, Y\rangle
$$

where the coefficients of K are $k_{i j}(x)=\left\langle\partial_{x_{i}} \nu, \partial_{x_{j}} \nu\right\rangle$. Prove that $I I I_{x}(X, Y)=$ $I_{x}\left(L^{2} X, Y\right)$.

