MIT OpenCourseWare
http://ocw.mit.edu

18.950 Differential Geometry

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

18.950 Homework 3

Problem 1. (3 points) Write down explicitly a curve $c:[0, \infty) \rightarrow \mathbb{R}^{2}$ such that the curvature $\kappa(t)$ goes to infinity as $t \rightarrow \infty$.

Problem 2. (7 points) Let $c: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a closed curve of period 5 . Suppose that it also satisfies

$$
c(t+1)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) c(t)
$$

where $\alpha=2 \pi / 5$. What can one say about the rotation number of c ?
Problem 3. (10 points) A polygonal curve is a map $c: I \rightarrow \mathbb{R}^{2}$ with the property that there are $t_{1}<\cdots<t_{m}$ in I such that

$$
c(t)=c_{0} t+v_{0} \text { for } t \leq t_{1}, c(t)=c_{1}+t v_{1} \text { for } t_{1} \leq t \leq t_{2}, \ldots
$$

Here $c_{i} \in \mathbb{R}^{2}$, and v_{i} are nonzero vectors in \mathbb{R}^{2}. Moreover, $\left(v_{i}, v_{i+1}\right)$ should never point in opposite directions.

Define an appropriate notion of curvature for a polygonal curve, and of total curvature for a closed polygonal curve (of course, defining closed polygonal curves first!). Does the Hopf Umlaufsatz still hold? Is there a version of Proposition 6.3 from the class? (for the last two questions, answers with sketch proofs are enough).

