MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.950 Differential Geometry Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.950 Homework 3

Problem 1. (3 points) Write down explicitly a curve $c : [0, \infty) \to \mathbb{R}^2$ such that the curvature $\kappa(t)$ goes to infinity as $t \to \infty$.

Problem 2. (7 points) Let $c : \mathbb{R} \to \mathbb{R}^2$ be a closed curve of period 5. Suppose that it also satisfies

$$c(t+1) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} c(t),$$

where $\alpha = 2\pi/5$. What can one say about the rotation number of c?

Problem 3. (10 points) A polygonal curve is a map $c : I \to \mathbb{R}^2$ with the property that there are $t_1 < \cdots < t_m$ in I such that

$$c(t) = c_0 t + v_0$$
 for $t \le t_1$, $c(t) = c_1 + tv_1$ for $t_1 \le t \le t_2, \dots$

Here $c_i \in \mathbb{R}^2$, and v_i are nonzero vectors in \mathbb{R}^2 . Moreover, (v_i, v_{i+1}) should never point in opposite directions.

Define an appropriate notion of curvature for a polygonal curve, and of total curvature for a closed polygonal curve (of course, defining closed polygonal curves first!). Does the Hopf Umlaufsatz still hold? Is there a version of Proposition 6.3 from the class? (for the last two questions, answers with sketch proofs are enough).