MIT OpenCourseWare
http://ocw.mit.edu

18.950 Differential Geometry

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

18.950 Homework 10

1. (6 points) Check the formula for the geodesic equations on surfaces of rotation from lecture 32 .
2. (6 points) As before, consider a surface of rotation. Given $c: I \rightarrow \mathbb{R}^{2}$, define the angular momentum to be $\tau=l_{1}(c)^{2} c_{2}^{\prime}$. Prove that if $\gamma=f(c)$ is a geodesic, then τ is constant.

Now consider the case of the hyperboloid created by rotating the curve $\left\{x_{1}^{2}=\right.$ $\left.1+x_{2}^{2}\right\}$ in the plane. In the following, we consider only geodesics which have unit speed. Prove that a geodesic with angular momentum <1 goes from one end of the hyperboloid to the other, while one with angular momentum >1 is confined to one half of the hyperboloid.
3. (8 points) In \mathbb{R}^{n}, a unit mass particle subject to the force given by a potential $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ moves according to Newton's law:

$$
\gamma^{\prime \prime}=-\nabla V(\gamma)
$$

Now suppose that we have a hypersurface $M \subset \mathbb{R}^{n+1}$ and a smooth potential function $V: M \rightarrow \mathbb{R}$. We want to study the motion of a unit mass particle on M subject to the resulting force. (i) What is the law of motion for $\gamma(t) \in M$? (ii) Now suppose that f is a partial parametrization of M, with $V^{f}(x)=V(f(x))$, and write $\gamma(t)=f(c(t))$. What is equation for $c(t)$? Check that that equation is indeed invariant under reparametrizations (changing from one f to another).

