MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.950 Differential Geometry Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## 18.950 Homework 10

**1.** (6 points) Check the formula for the geodesic equations on surfaces of rotation from lecture 32.

**2.** (6 points) As before, consider a surface of rotation. Given  $c: I \to \mathbb{R}^2$ , define the angular momentum to be  $\tau = l_1(c)^2 c'_2$ . Prove that if  $\gamma = f(c)$  is a geodesic, then  $\tau$  is constant.

Now consider the case of the hyperboloid created by rotating the curve  $\{x_1^2 = 1 + x_2^2\}$  in the plane. In the following, we consider only geodesics which have unit speed. Prove that a geodesic with angular momentum < 1 goes from one end of the hyperboloid to the other, while one with angular momentum > 1 is confined to one half of the hyperboloid.

**3.** (8 points) In  $\mathbb{R}^n$ , a unit mass particle subject to the force given by a potential  $V : \mathbb{R}^n \to \mathbb{R}$  moves according to Newton's law:

$$\gamma'' = -\nabla V(\gamma).$$

Now suppose that we have a hypersurface  $M \subset \mathbb{R}^{n+1}$  and a smooth potential function  $V: M \to \mathbb{R}$ . We want to study the motion of a unit mass particle on M subject to the resulting force. (i) What is the law of motion for  $\gamma(t) \in M$ ? (ii) Now suppose that f is a partial parametrization of M, with  $V^f(x) = V(f(x))$ , and write  $\gamma(t) = f(c(t))$ . What is equation for c(t)? Check that that equation is indeed invariant under reparametrizations (changing from one f to another).