LECTURE 22: THE SPECTRAL SEQUENCE OF A FILTERED COMPLEX

Let $(C_*, \{F_sC_*\}, d)$ be a filtered chain complex. We will describe an associated spectral sequence which calculates the associated graded of the homology from the homology of the associated graded chain complex:

$$E_{s,t}^1 = H_{s+t}(Gr_sC_*) \Rightarrow H_{s+t}(C_*).$$

Convergence in this context means that

$$E_{s,t}^{\infty} = Gr_s H_{s+t}(C_*)$$

where the associated graded is taken with respect to the induced filtration on $H_*(C)$. One technical point: we only defined $E_{s,t}^{\infty}$ for spectral sequences which are eventually first quadrant.

We shall define the spectral sequence $\{E_{s,t}^r, d_r\}$ inductively with respect to r. The long exact sequences associated to the short exact sequences

$$0 \to F_{s-1}C_* \to F_sC_* \to Gr_sC_* \to 0$$

piece together to give a diagram similar to that occuring on page 3 of Hatcher's spectral sequences book. Let $F_s = F_s C_*$ and $Gr_s = Gr_s C_*$. We have already specified $E_{s,t}^1$. Let d_1 be the composite

$$d_1: E_{s,t}^1 = H_{s+t}(Gr_s) \xrightarrow{\partial} H_{s+t-1}(F_{s-1}) \to H_{s+t-1}(Gr_{s-1}) = E_{s-1,t}^1$$

Then $E_{*,*}^2$ is necessarily the homology of $(E_{*,*}^1, d_1)$. Assume that $E_{s,t}^r$ has been defined. We need to define d_r . Suppose that $[x] \in E_{s,t}^r$ is represented by $x \in E_{s,t}^1 = H_{s+t}(Gr_s)$. Consider the diagram

$$H_{s+t-1}(F_{s-r}) \longrightarrow H_{s+t-1}(Gr_{s-r})$$

$$\downarrow$$

$$H_{s+t-1}(F_{s-r+1})$$

$$\downarrow$$

$$\vdots$$

$$H_{s+t}(Gr_s) \longrightarrow H_{s+t-1}(F_{s-1})$$

The differential d_r is given by

$$d_r([x]) = [y]$$

where $[y] \in E^r_{s-r,t+r-1}$ is represented by $y \in E^1_{s-r,t+r-1} = H_{s+t-1}(Gr_{s-r})$, and the element y is given by the following process:

(1) send x to $\partial x \in H_{s+t-1}(F_{s-1})$.

Date: 4/6/06.

- (2) lift ∂x to $\partial x \in H_{s+t-1}(F_{s-r})$. (3) take y to be the image of ∂x in $H_{s+t-1}(Gr_{s-r})$.

There are many things to check, such as that the lift ∂x exists, that d_r is independent of the choice of lift, that d_r is independent of the choice of representative x, and that $d_r^2 = 0$. These are all inductive diagram chases involving the various long exact sequences. Having done this, we can define $E_{*,*}^{r+1}$ to be the homology of $(E^r_{*,*}, d_r).$ We now sketch the origin of the isomorphism

$$\phi: E_{s,t}^{\infty} \cong Gr_s H_{s+t}(C).$$

An element $[z] \in E_{s,t}^{\infty}$ is represented by an element $z \in E_{s,t}^1 = H_{s+t}(Gr_s)$ for which $d_r([z]) = 0$ for all r. Inductively, this means that ∂z lifts to $H_{s+t-1}(F_{s-r})$ for r arbitrarily large. Since $F_s = 0$ for s < 0, we may conclude that $\partial r = 0$. We conclude that z is in the image of the map

$$H_{s+t}(F_s) \to H_{s+t}(Gr_s).$$

Let w be an element that maps to z. Take \overline{w} to be the image of w in $Gr_sH_{s+t}(C)$. Then $\phi([z]) = \overline{w}$. Again, many things need to be checked, but this can be a fun activity.