LECTURE 22: THE SPECTRAL SEQUENCE OF A FILTERED COMPLEX

Let $\left(C_{*},\left\{F_{s} C_{*}\right\}, d\right)$ be a filtered chain complex. We will describe an associated spectral sequence which calculates the associated graded of the homology from the homology of the associated graded chain complex:

$$
E_{s, t}^{1}=H_{s+t}\left(G r_{s} C_{*}\right) \Rightarrow H_{s+t}\left(C_{*}\right)
$$

Convergence in this context means that

$$
E_{s, t}^{\infty}=G r_{s} H_{s+t}\left(C_{*}\right)
$$

where the associated graded is taken with respect to the induced filtration on $H_{*}(C)$. One technical point: we only defined $E_{s, t}^{\infty}$ for spectral sequences which are eventually first quadrant.

We shall define the spectral sequence $\left\{E_{s, t}^{r}, d_{r}\right\}$ inductively with respect to r. The long exact sequences associated to the short exact sequences

$$
0 \rightarrow F_{s-1} C_{*} \rightarrow F_{s} C_{*} \rightarrow G r_{s} C_{*} \rightarrow 0
$$

piece together to give a diagram similar to that occuring on page 3 of Hatcher's spectral sequences book. Let $F_{s}=F_{s} C_{*}$ and $G r_{s}=G r_{s} C_{*}$. We have already specified $E_{s, t}^{1}$. Let d_{1} be the composite

$$
d_{1}: E_{s, t}^{1}=H_{s+t}\left(G r_{s}\right) \xrightarrow{\partial} H_{s+t-1}\left(F_{s-1}\right) \rightarrow H_{s+t-1}\left(G r_{s-1}\right)=E_{s-1, t}^{1} .
$$

Then $E_{*, *}^{2}$ is necessarily the homology of $\left(E_{*, *}^{1}, d_{1}\right)$. Assume that $E_{s, t}^{r}$ has been defined. We need to define d_{r}. Suppose that $[x] \in E_{s, t}^{r}$ is represented by $x \in E_{s, t}^{1}=$ $H_{s+t}\left(G r_{s}\right)$. Consider the diagram

$$
H_{s+t}\left(G r_{s}\right) \longrightarrow H_{s+t-1}\left(F_{s-1}\right)
$$

The differential d_{r} is given by

$$
d_{r}([x])=[y]
$$

where $[y] \in E_{s-r, t+r-1}^{r}$ is represented by $y \in E_{s-r, t+r-1}^{1}=H_{s+t-1}\left(G r_{s-r}\right)$, and the element y is given by the following process:
(1) send x to $\partial x \in H_{s+t-1}\left(F_{s-1}\right)$.

Date: 4/6/06.
(2) lift ∂x to $\widetilde{\partial x} \in H_{s+t-1}\left(F_{s-r}\right)$.
(3) take y to be the image of $\widetilde{\partial x}$ in $H_{s+t-1}\left(G r_{s-r}\right)$.

There are many things to check, such as that the lift $\widetilde{\partial x}$ exists, that d_{r} is independent of the choice of lift, that d_{r} is independent of the choice of representative x, and that $d_{r}^{2}=0$. These are all inductive diagram chases involving the various long exact sequences. Having done this, we can define $E_{*, *}^{r+1}$ to be the homology of $\left(E_{*, *}^{r}, d_{r}\right)$.

We now sketch the origin of the isomorphism

$$
\phi: E_{s, t}^{\infty} \cong G r_{s} H_{s+t}(C) .
$$

An element $[z] \in E_{s, t}^{\infty}$ is represented by an element $z \in E_{s, t}^{1}=H_{s+t}\left(G r_{s}\right)$ for which $d_{r}([z])=0$ for all r. Inductively, this means that ∂z lifts to $H_{s+t-1}\left(F_{s-r}\right)$ for r arbitrarily large. Since $F_{s}=0$ for $s<0$, we may conclude that $\partial r=0$. We conclude that z is in the image of the map

$$
H_{s+t}\left(F_{s}\right) \rightarrow H_{s+t}\left(G r_{s}\right)
$$

Let w be an element that maps to z. Take \bar{w} to be the image of w in $G r_{s} H_{s+t}(C)$. Then $\phi([z])=\bar{w}$. Again, many things need to be checked, but this can be a fun activity.

