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LECTURE 5: COFIBRATIONS, WELL POINTEDNESS, WEAK 

EQUIVALENCES, RELATIVE HOMOTOPY 

In other words, today’s lecture consisted of a hodgepodge of odds and ends. 

1. Cofibrations and well pointedness 

If i : A � X is an inclusion of a subcomplex into a CW complex, then there is→ 
an isomorphism 

Hn(X, A) ∼ Hn(X/A). 

This may not hold for general subspaces A in X. We abstract a property that we 
will later see makes this true. 

Let ev0 : Map(I, Y ) → Y be the “evaluation at 0” map. 

Definition 1.1. A map i : A X is a cofibration if it satisfies the homotopy→
extension property (HEP): for each map f : X Y , and each homotopy H : A →
Map(I, Y ) making the square commute: 

→ 

H 
A // Map(I, Y ) 

::
ev0i 

H �� ��
//X Y 

f 

there exists an extension homotopy H making the upper and lower triangles com
mute. 

Remark 1.2. It turns out that a cofibration is necessarily an inclusion with closed 
image. Being a cofibration is equivalent to being an neighborhood deformation 
retract (NDR) pair (see May). This roughly means that the is a neighborhood of A 
in X for which A is a deformation retract (the actual definition is more complicated). 
Thus it is common for closed inclusions to be cofibrations. 

Definition 1.3. A space X ∈ Top∗ is wellpointed if the inclusion ∗ � X is a→
cofibration. 

Let Susp(X) be the unreduced suspension. It is the space obtained from X × I 
by collapsing the ends of the cylinder. 

In the homework problem where I asked you to show Hn(X) ∼ Hn+1(ΣX) I 
should have assumed that X was well pointed. I am assigning the following in the 
next homework. 

Lemma 1.4. Suppose that X is well pointed. Then the quotient map 

Susp(X) → ΣX 

is a homotopy equivalence. 
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Not every pointed space is well pointed. However, if a pointed space X is not 
well pointed, we can form a new “whiskered” space Xw = X ∪{0} I where we glue 
an interval to the basepoint. We give Xw the basepoint {1}. You will verify: 

The inclusion X � Xw is a deformation retract. • → 
• Xw is well pointed. 

2. Weak equivalences 

The action of the fundamental groupoid on the higher homotopy groups is de
scribed by a functor 

πk (X, −) : πoid(X) → Groups. 
In particular, because πoid(X) is a groupoid, a path γ from x to y must induce an 
isomorphism 

γ∗ : πk(X, x) → πk(X, y). 

Definition 2.1. A map of spaces f : X Y is a weak homotopy equivalence, or 
simply a weak equivalence if 

→ 

(1) f∗ : π0(X) → π0(Y ) is a bijection. 
(2) f∗ : πk (X, x) → πk(Y, f(x)) is an isomorphism for all k > 0 and all x ∈ X. 

We used the action of the fundamental groupoid to prove the following proposi
tion. 

Proposition 2.2. Homotopy equivalences are weak homotopy equivalences. 

3. Relative homotopy groups 

Let X be pointed, and let A be a subspace of X containing the basepoint. We 
define relative homotopy groups 

πk (X, A) = [(Ik, ∂Ik , ∂Ik − (Ik−1 × {0})), (X, A, ∗)]. 
That is, maps of the kcube which send the boundary into A, and which sent all 
but one of the faces of the cube to the basepoint, up to homotopies which preserve 
these conditions. 

For k = 0, relative homotopy is not defined. For k = 1, relative homotopy is a 
set. For k ≥ 2, relative homotopy is a group, with the group operation given by 
juxtaposition of cubes. For k ≥ 3, these groups are abelian. 

Much like relative homology, relative homotopy fits into a long exact sequence: 

· · · → πk (A) i∗− ∗−πk(X) 
j→ → πk (X, A) 

∂ −→ πk−1(A) → · · · 
· · · → π1(X, A) → π0(A) → π0(X) 

The end of this sequence must be interpreted appropriately, because these are just 
sets: π1(X) acts on π1(X, A), with orbits given by the subset of π0(A) sent to the 
basepoint component in π0(X). 
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