### 18.905 Problem Set 7

Due Friday, October 27 in class

## The method of acyclic models.

5 questions. Do any 4 for full credit; all 5 for bonus marks.
Suppose that $\mathcal{C}$ is a category, and $F$ is a functor from $\mathcal{C}$ to abelian groups. Suppose that for each $i \in I, M_{i}$ is an object of $\mathcal{C}$ and $x_{i} \in F\left(M_{i}\right)$. We say that $F$ is free with models $\left\{\left(M_{i}, x_{i}\right)\right\}_{i \in I}$ if, for all $c \in \mathcal{C}, F(c)$ is free with basis

$$
\left\{F(\sigma)\left(x_{i}\right) \mid i \in I, \sigma: M_{i} \rightarrow c\right\} .
$$

In other words, we can write any element of $F(c)$ uniquely as a sum with finitely many nonzero terms

$$
\sum_{i} \sum_{\sigma: M_{i} \rightarrow c} n_{i, \sigma} F(\sigma)\left(x_{i}\right) .
$$

We will refer to $\left\{M_{i}\right\}$ as the set of models of $F$.
Let $\mathrm{Top}^{2}$ be the category of pairs $(X, Y)$ of topological spaces, where a map $(X, Y) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ is a pair of maps $(f, g)$, where $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$.

1. Define functors from Top ${ }^{2}$ to abelian groups by

$$
\begin{gathered}
A_{n}(X, Y)=C_{n}(X \times Y) \\
B_{n}(X, Y)=\bigoplus_{p+q=n} C_{p}(X) \otimes C_{q}(Y)
\end{gathered}
$$

Show that $A_{n}$ is free with a single model $\left(\Delta^{n}, \Delta^{n}\right)$, and $B_{n}$ is free with set of models $\left\{\left(\Delta^{p}, \Delta^{q}\right) \mid p+q=n\right\}$. Show that $A_{0}(X, Y)$ and $B_{0}(X, Y)$ are isomorphic in a natural way, and that this isomorphism preserves elements in the image of the boundary map.
2. The functors $A_{n}(X, Y)$ and $B_{n}(X, Y)$ assemble into the chain complexes $A_{*}(X, Y)=C_{*}(X \times Y)$ and $B_{*}(X, Y)=C_{*}(X) \otimes C_{*}(Y)$. Use the algebraic Künneth formula, together with facts we already know, to show that

$$
H_{k}\left(A_{*}\left(\Delta^{p}, \Delta^{q}\right)\right)=H_{k}\left(B_{*}\left(\Delta^{n}, \Delta^{n}\right)\right)= \begin{cases}\mathbb{Z} & k=0 \\ 0 & k>0\end{cases}
$$

(We say that the model $\left(\Delta^{n}, \Delta^{n}\right)$ is acyclic for $B_{*}$, and the models $\left(\Delta^{p}, \Delta^{q}\right)$ are acyclic for $A_{*}$.) Conclude that the chain complexes $A_{*}\left(\Delta^{p}, \Delta^{q}\right)$ and $B_{*}\left(\Delta^{n}, \Delta^{n}\right)$ are exact except in dimension 0.
3. If a functor $F$ is free with models $\left\{\left(M_{i}, x_{i}\right)\right\}_{i \in I}$, give a brief explanation why (similarly to a problem on a previous assignment) a natural transformation $\Theta$ from $F$ to another functor $G$ is the same as a choice of $\Theta_{M_{i}}\left(x_{i}\right)$ for all $i$.
4. Suppose that we have functors $F_{*}, G_{*}$ from a category $\mathcal{C}$ to the category of chain complexes, and natural transformations $\Theta_{n}: F_{n} \rightarrow G_{n}$ for $n<N$ such that $\Theta_{n-1} \circ \partial=\partial \circ \Theta_{n}$ whenever both sides are defined.
Suppose that $F_{N}$ is free with models $\left\{\left(M_{i}, x_{i}\right)\right\}_{i \in I}$, and for all $i$ the sequence

$$
G_{N}\left(M_{i}\right) \rightarrow G_{N-1}\left(M_{i}\right) \rightarrow G_{N-2}\left(M_{i}\right)
$$

is exact, or such that $\Theta_{N-1}$ carries boundaries to boundaries.
Show that we can find a natural transformation $\Theta_{N}: F_{N} \rightarrow G_{N}$ such that $\Theta_{N-1} \circ \partial=\partial \circ \Theta_{N}$. Hint: Find elements $y_{i} \in G_{N}\left(M_{i}\right)$ such that $\partial y_{i}=\Theta_{N-1}\left(\partial x_{i}\right)$, and apply problem 3.
Conclude that there are natural chain maps $A_{*}(X, Y) \rightarrow B_{*}(X, Y)$ and $B_{*}(X, Y) \rightarrow A_{*}(X, Y)$ extending the isomorphism in dimension zero.
5. Suppose that we have functors $F_{*}, G_{*}$ from a category $\mathcal{C}$ to the category of chain complexes, and two sets of natural transformations $\Theta_{n}, \Sigma_{n}: F_{n} \rightarrow$ $G_{n}$ such that $\Theta_{n-1} \circ \partial=\partial \circ \Theta_{n}$ and $\Sigma_{n-1} \circ \partial=\partial \circ \Sigma_{n}$.
Assume that we have natural transformations $H_{n}: F_{n} \rightarrow G_{n+1}$ for $n<N$ such that $\partial \circ H_{n}+H_{n-1} \circ \partial=\Theta_{n}-\Sigma_{n}$.
Suppose that $F_{N}$ is free with models $\left\{\left(M_{i}, x_{i}\right)\right\}_{i \in I}$, and for all $i$ the sequence

$$
G_{N+1}\left(M_{i}\right) \rightarrow G_{N}\left(M_{i}\right) \rightarrow G_{N-1}\left(M_{i}\right)
$$

is exact.
Show that we can find a natural transformation $H_{N}: F_{N} \rightarrow G_{N+1}$ such that $\partial \circ H_{N}+H_{N-1} \circ \partial=\Theta_{N}-\Sigma_{N}$. Hint: Find elements $y_{i} \in G_{N+1}\left(M_{i}\right)$ such that $\partial y_{i}=\Theta_{N}\left(x_{i}\right)-\Sigma_{N}\left(x_{i}\right)-H_{N-1}\left(\partial x_{i}\right)$, and apply problem 3.

Conclude that any two natural chain maps $A_{*}(X, Y)$ and $B_{*}(X, Y)$ extending the isomorphisms in degree zero are chain homotopic, hence induce the same map on homology, and that any composite natural chain maps

$$
A_{*}(X, Y) \rightarrow B_{*}(X, Y) \rightarrow A_{*}(X, Y)
$$

and

$$
B_{*}(X, Y) \rightarrow A_{*}(X, Y) \rightarrow B_{*}(X, Y)
$$

induce the identity map on homology.

