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The 18.821 Project Report
 

What a report is: A document presenting the project as you have 
defined it, the main findings your team has obtained, and how you 
obtained them. 

Findings may come in many forms: 
� rigorous results 

� heuristic arguments 

� conjectures 

� observations 

� data 

The target audience is students about at the same level as yourself. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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What a report is not:
 

A project report is not an exposition of what’s known on the
 
subject.
 
It is also not a research paper (necessarily).
 
It’s not a lab notebook.
 

Length: It should be long enough to convey your project and your 
findings, without padding or undue brevity. Generally this is around 
ten pages excluding possible appendices. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Style:
 

Generally speaking, the 18.821 Lab Report adheres to the style of
 
a paper in a research journal in mathematics.
 

Mathematics journal articles are organized as follows:
 
Title and Abstract 
Introduction 

(Background) 

Body 

(Appendices) 

References 

Here are the parts of a sample 18.821 paper, in several versions. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Title and Abstract: First version
 

Enumeration of colorings of arcs of projections of a knot K 

Al Dough, Bea Row, and Cee Low 

The title should be convey the subject-matter in a punchy but 
accurate way. Avoid symbols. 

Abstract. We look at possible ways of colorings the arcs in the 
plane projection of a knot. We prove that this gives rise to a knot 
invariant, which can distinguish infinitely many different 
equivalence classes of knots. 

The abstract outlines the contents of the paper in a few sentences, 
precisely but without definitions or explanations. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Title and Abstract: Second version
 

Coloring Knots 
Al Dough, Bea Row, and Cee Low 

The title should be convey the subject-matter in a punchy but 
accurate way. Avoid symbols. 

Abstract. We describe certain colorings of the arcs of a knot 
projection. We prove that enumeration of these colorings gives rise 
to a knot invariant that can distinguish infinitely many different 
equivalence classes of knots. 

The abstract outlines the contents of the paper in a few sentences, 
precisely but without definitions or explanations. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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The introduction gets the readers involved in the subject by 
describing the context of the problem, what the paper achieves, 
and what methods are used. It should end with a brief description 
of the structure of the paper, and acknowledgements. 

Questions to ask about this section: 

Does it give the reader a good intuitive grasp of what the 
problem is? 

Does it express the authors’ approach to the problem? 

Does it give the structure of the paper and 
acknowledgements? 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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1. Introduction (First version) 
In this project, we investigate knots. The main question in knot 
theory is: how can we tell whether a knot can be deformed into 
another one? Many knot theorists have devoted a lot of time to 
classifying knots. Their work gave rise to the Rolfsen table of 
Prime knots [1]. Many invariants (the Alexander polynomial, the 
Jones polynomial, the knot group, and knot colorings) have been 
developed for this purpose. 
The structure of our paper is as follows. In the next section, we 
explain knots and knot projections, as well as the Reidemeister 
moves. Section 3 introduces the notion of knot 3-coloring, and 
proves that 3-colorability is unchanged under Reidemeister moves. 
Section 4 generalizes this to n-colorability for any n. Section 5 
discusses example computations. Section 6 explains how making 
certain modifications to a knot affects the number of 3-colorings. 
Sections 1–2 were written by Al Dough, and Sections 5–6 by Bea 
Row. Sections 4 and 7 were written by Cee Low. Section 3 was 
written by Row and Low. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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1. Introduction (Second version) 
Mathematical knots are closed loops or strings in space, without 
kinks or self intersections. These objects lend themselves to simple 
experimentation, but also have important applications. 
Mitochondrial DNA is a concrete example where approximately 
similar structures appear in nature [1]. 
The main theoretical tool in studying knots are knot invariants. A 
knot invariant is a number attached to a knot, and which is 
unchanged under deformations. This, for instance, allows one to 
prove that certain knots cannot be deformed into a simple circle. 
Our project studies 3-colorings of knots, which are ways of labeling 
segments of a knot with three possible labels. It will turn out that 
3-colorability of a knot is a knot invariant, which is sufficiently 
strong to distinguish the first inequivalent examples of knots (the 
unknot and the trefoil knot). The proof that 3-colorability is an 
invariant uses a case-by-case analysis of Reidemeister moves. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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1. Introduction (Third version) 
This paper studies knots and knot colorability. Our main result is 
this: 
Theorem. (Theorem 4.3 in the paper) 3-colorability of a knot is 
invariant under Reidemeister moves. 
This means that it is an invariant of the knot. For instance, one 
can use this to prove that the trefoil cannot be continuously 
deformed into the unknot: it is genuinely knotted. In fact, we will 
prove the stronger result that the number of 3-colorings is a knot 
invariant. 
The main strategy will be to reduce questions about 3-colorings to 
linear algebra, via a certain incidence matrix associated to a knot 
diagram. Reidemeister moves give rise to Gauss operations (row or 
column operations) of this matrix. This is familiar from linear 
algebra, with the twist that our ground field is the finite field F3. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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1. Introduction (Fourth version)
 
Mathematical knots are closed loops or strings in space, without
 
kinks or self-intersections. The main question in knot theory is:
 
how can we tell whether a knot can be deformed into another one? 
For instance, look at the following two knots (figures taken from 
[3,5]): 

Image of an example of a knot removed due to copyright restrictions.

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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The one on the right is an unknot, which means that it can be 
deformed into a circle; in contrast, the one on the left, called a 
trefoil knot, is a genuine nontrivial knot. The first fact can be 
shown by going through an elementary sequence of 
transformations; however, the second one requires more advanced 
tools, namely knot invariants. 
A knot invariant is a number (or other object) attached to a knot, 
which is unchanged under deformations. Our project studies knot 
3-colorings, which are ways of labeling segments of a knot with 
three possible labels. It will turn out that 3-colorability of a knot is 
a knot invariant. This is the main result of the paper (Theorem 
3.1), and will be shown using a case-by-case analysis of knot 
deformations. The unknot is not 3-colorable, but the trefoil is; 
hence, we can show that they cannot be deformed into each other 
(Example 4.2). Using the number of colorings as an invariant, we’ll 
be able to find more inequivalent knots (Corollary 4.4). We 
conjecture (Conjecture 4.1) the stronger result that the number of 
3-colorings is a knot invariant. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Knot colorability can be generalized from 3 colors to n, for any 
n ≥ 3. We discuss this generalization in Section 5. It turns out 
that these are genuinely better invariants: there are knots which 
can be distinguished by their 5-colorings but not by their 
3-colorings (Example 5.2). 

Sections 1–2 were written by Al Dough, and Sections 5–6 by Bea 
Row. Sections 4 and 7 were written by Cee Low. Section 3 was 
written by Row and Low. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Sometimes a “background section” is useful. It introduces context, 
definitions, and perhaps notation, in precise terms. 

Questions to ask about this section: 
Are the contents well motivated?
 

Is the level of detail and precision appropriate?
 

Are these items actually needed in the sequel?
 

Is the exposition well-organized?
 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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2. Background (First version)
 
Definition 2.1. An oriented knot is a smooth map k : R → R3
 

such that k(s) = k(t) if and only if s − t ∈ Z, as well as k'(t)  
= 0 
for all t. An unoriented knot is such a map considered up to 
time-reversal k(t) ↔ k(−t). 
In this paper, we will consider only unoriented knots. In fact, 
instead of k itself we consider the image k(R) ⊂ R3, which is a 
closed loop. 
Definition 2.2. Two oriented knots k0, k1 are called isotopic if 
there is a family of knots ks, smooth with respect to the parameter 
s ∈ [0, 1], joining them. Unoriented knots are called isotopic if, for 
some choice of orientation, the associated oriented knots are 
isotopic. The intuitive image is that the knot ks moves around, 
without acquiring self intersections or kinks. In fact, we will study 
knots via knot projections. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Definition 2.3. A knot projection is a smooth map l : R → R2 

such that l(t) = l(t + 1) for all t, l '(t) = 0 for all t, and with at 
most finitely many double crossings. At each crossing, the two 
branches should meet transversally, and we distinguish one of them 
as overbranch (the other being the underbranch). 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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2. Background (Second version) 
Intuitively, a mathematical knot K ⊂ R3 can be thought of as a 
closed, tangled loop of string in 3-dimensional space. The formal 
definition is that K is the image of an infinitely differentiable map 
k : R → R3 which satisfies: 

k(t) = k(t + 1) for all t (this makes K into a closed circle); 
k '(t) = 0 (this means that there are no kinks or singular 
points); 
k(s) = k(t) for all 0 ≤ s < t < 1 (this avoids self 
intersections). 

However, we will mostly appeal to geometric intuition, avoiding 
formal details. Two knots are called equivalent if they can be 
deformed smoothly into each other. 
Mostly, we will study knots through their projections. A knot 
projection is a circle drawn in the plane with only transverse self 
intersections. Moreover, at each intersection, one of the two 
branches is distinguished as lying on top of the other. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
17



2. Background (Third version) 
A knot K is a circle smoothly embedded in three-dimensional 
space. Intuitively, it can be thought of as a closed piece of string. 
It can be tangled, but may not have kinks or self intersections. 
Two knots are considered equivalent if they can be smoothly 
deformed into each other (again, without causing kinks or self 
intersections). There are precise definitions of these notions 
involving calculus, but we will not really need them, since all our 
study of knots is done via their projections to the plane. 
A knot projection P is a closed smooth curve in the plane R2, 
which has only ordinary self intersections, and with some additional 
information. Having ordinary self intersections means that at most 
two branches of the curve meet at any point. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Moreover, the two branches which meet always cross each other 
transversally, meaning that they have different tangent directions. 
The additional information is that at any crossing point, we single 
out one of the branches as the overcrossing (and the other as the 
undercrossing). Knot projections are usually drawn like this (taken 
from [4]): 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Each knot projection P describes a knot K = K(P ), in a way 
which is unique up to equivalence. Different plane projections can 
also describe equivalent knots (for instance, in the Introduction we 
saw a very complicated projection whose associated knot is 
equivalent to the unknot, described by the circle in the plane). 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Presentation of results and supporting arguments 

There is no optimal way of presenting mathematics, but there are 
some very definite rules and conventions. 

Questions to ask: 
Is the status of each statement (claimed as proven, quoted
 
from literature, conjectured) clear?
 

Are successive statements adequately connected to each
 
other?
 

Are arguments correct and correctly presented?
 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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3. Main theorem (First version) 

Theorem 3.1. 3-colorability is a knot invariant. 
We will prove this by showing that it is invariant under 
Reidemeister moves. Type I is straightforward. Type II is still 
simple, but already requires the distinction between two cases (of 
strands with equal or unequal colors). Type III is divided into many 
cases, and we’ll only do the most interesting one (where the colors 
are as distinct as possible). 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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3. Main theorem (Second version) 

Theorem 3.1. 3-colorability is a knot invariant. 
Our approach is slightly indirect, and involves the arithmetic of the 
field F3 of integers modulo 3. Given a nontrivial knot projection P 
with n crossings, we define an n by n matrix A = A(P ) with 
coefficients in F3, as follows. Columns of the matrix are labeled by 
arcs, and rows are labeled by crossings. The (i, j)-th entry Aij is 1 
if the j-th crossing lies on the i-th arc (which can mean that it is 
an overcrossing, or that it is an undercrossing and the arc ends 
there). All other entries are set to be 0. We will show first the 
following: 
Lemma 3.2. A vector v ∈ (F3)n is a coloring of P if and only if 
Av = 0.
 
This includes the trivial colorings v = (i, . . . , i), which always exist
 
and are ruled out by our usual terminology. As an easy
 
consequence, we get:
 
Lemma 3.3. The knot projection P is colorable if and only if 
rank(A) < n − 1. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Presentation of results and supporting arguments 

Three weeks isn’t very much time, and mathematics is more than 
formal statement and proof. Often you will want to present 
observations or conjectures. 

Questions to ask: 
Is the status of each statement (claimed as proven, quoted 
from literature, conjectured) clear? 

Are successive statements adequately connected to each 
other? 

Are arguments correct and correctly presented? 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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4. The number of colorings (First version)
 
The result about 3-colorability can be strengthened as follows:
 
Experimental Fact 4.1. The number of 3-colorings is a knot
 
invariant.
 
We have no rigorous proof of this. It is obviously true for unknots, 
since then the number of 3-colorings is always zero. Next, we have 
considered 20 different projections of the trefoil (Appendix 1). 
They all turn out to have the same number of colorings, 
supporting our conjecture. It is still possible that this is a special 
property of the trefoil, and fails for more complicated knots. 
Experimental Fact 4.2. The number of 3-colorings of a given 
knot projection is always of the form 3n − 3, for some integer n. 
We have taken the first 12 knots from the classical knot tables [7], 
and computed their numbers of colorings by hand. The result of 
the computation (see Appendix 2) supports Experimental Fact 4.2. 
We have actually found a general proof in the literature [4], but it 
uses algebra arguments which are quite different from the ones 
used here. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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4. The number of colorings (Second version)
 
3-colorability as a knot invariant has limited power, since it can at
 
most divide all possible knots into two classes. We would like to
 
refine it as follows:
 
Conjecture 4.1. The number of 3-colorings is a knot invariant. 
The natural way to approach this is by inspection of the proof of 
Theorem 3.1. Under Reidemeister moves of type I and II, that 
proof provides a simple bijection between colorings of the original 
knots and of the modified one, which provides partial evidence for 
the conjecture. Reidemeister III is more complicated, and we could 
not complete the argument in all cases. 
Conjecture 4.2. The number of 3-colorings of a given knot 
projection is always of the form 3n − 3, for some integer n. 
3n − 3 is always even and divisible by three (by computations 
modulo 2 and 3, respectively). Note that we can permute the 
colors in any 3-coloring, which means that the number of colorings 
is always divisible by 6. This provides partial evidence for the 
conjecture. One could of course also get experimental evidence by 
looking at the classical knot tables [7]. Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.26



4. The number of colorings (Third version)
 
In addition to the basic question of whether a knot is colorable,
 
one can also look at the number of possible colorings.
 
Empirical Fact 4.1. The number of 3-colorings is a knot invariant. 
Empirical Fact 4.2. The number of 3-colorings is always of the 
form 3n − 3, for some integer n. 
The first fact is important since it yields an invariant that can have 
potentially infinitely many different values. The second fact 
restricts the range of this invariant. We cannot prove either 
statement rigorously, but there is partial evidence of various kinds: 
Theoretical evidence. The number of 3-colorings is invariant under 
Reidemeister moves of type I and II. This can be seen by 
inspecting our proof of Theorem 3.1. Namely, if two knots are 
related by such a move, the argument from the proof provides 
bijection between their possible 3-colorings. If this argument could 
be extended to type III, it would provide a complete proof of 
Experimental Fact 4.1. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Experimental evidence. We have looked at 10 pairs of different 
projections of knots, differing from each other by a type III move. 
In all cases, the number of 3-colorings is the same before and after 
the move (Appendix 1), as predicted by Experimental Fact 4.1. We 
have also taken the first 12 knots from the classical knot tables [7], 
and computed their numbers of colorings by hand. The result of 
the computation (see Appendix 2) supports Experimental Fact 4.2. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Citations: You need to cite all references (from books, articles, 
webpages, personal communication) that you consulted and which 
had an impact on your report. 

Questions to ask about citations: 
Does the reader know when you are quoting a result, and 
where you got it? 

Can the reader see clearly where your original contribution 
lies? 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Examples of poor citation: 

Useful probability textbooks are [1,2,15]...
 
We will use without further comment results from [5]...
 
Inspired by [3], we introduce the following matrix...
 
[5, Theorem 7] then yields the desired result...
 
The following argument is partly borrowed from [3] and partly
 
original...
 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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Examples of good practice: 

Knots will be listed in the notation from [5, pages 210-218]... 
We apply the Central Limit Theorem [5, Theorem 15.7] to our
 
probability distribution P , and conclude that...
 
Recall the main theorem about Reidemeister moves:
 
[4, Theorem 11]. Let two knot . . . 
We take the following definition from [3, pages 10–12], which 
treats only the case n = 3, and generalize it to all n. 

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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� On the other hand, you will have more to do (maybe even
 
more mathematics) in response to comments on the first draft. 

Practice in writing mathematics will contribute important elements 
to your general writing skill (precision of expression, organizing a 
complex argument, avoiding BS). 

Final comments: 
Revision is important: Almost everyone writes and rewrites
 
several times.
 
Team feedback is important: if your teammates find your text
 
hard to read, so will others. All team members are responsible
 
for the coherence of the document as a whole.
 
The first draft should be your best shot at a final draft. Don’t
 
expect us to do your laundry for you.
 

32

Courtesy of Paul Seidel, Tom Mrowka, Richard Stanley, and Haynes Miller. Used with permission.
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