18.786 Midterm Exam

April 1, 2010

Solve two out of these three problems. Justify your answers: for instance, saying that a high-level gp function (such as $\operatorname{bnfclgp}())$ outputs the answer you give is not enough justification. You may use gp without justification to do elementary calculations such as computing the discriminant of a polynomial, determinant of a matrix, doing arithmetic modulo primes or a polynomial, etc.
You may use results proved in class, lecture notes, or the problem sets. You are not allowed to google/wiki search for answers.

1. Let $f(x)=x^{3}+x-4$, and $K=\mathbb{Q}[x] /(f(x))$ be the number field obtained by adjoining a root α of f.
(a) Find out the number of real and complex embeddings of K.
(b) Show that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(c) Find out how the primes 2, 3, 5 factor in K.
(d) Calculate the class group of K.
2. Let p be a prime.
(a) Describe and count all the (finitely many, by homework) quadratic extensions of \mathbb{Q}_{p} (e.g. by describing polynomials $f(x)$ such that the extension is $\left.\mathbb{Q}_{p}[X] /(f(x))\right)$. Describe the ramification behaviour of p in each of these extensions.
(b) Recall that the valuation on \mathbb{Q}_{p} extends uniquely to any finite extension, and hence to the algebraic closure $\overline{\mathbb{Q}}_{p}$. Show that $\overline{\mathbb{Q}}_{p}$ is not a complete field for this valuation.
3. Let $g(x)=x^{4}+18 x^{2}+2$, and $K=\mathbb{Q}[x] /(g(x))$ be the number field obtained by adjoining a root α of g.
(a) Compute the number of real and complex embeddings of K, and the rank of the unit group of \mathcal{O}_{K}.
(b) Compute the torsion part of the units. (Hint: if $\zeta_{n} \in K$, compare the primes which ramify in K and in $\left.\mathbb{Q}\left(\zeta_{n}\right).\right)$
(c) Describe an explicit non-torsion unit. (Hint: find a real quadratic subfield of K.)

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

