
ALGEBRAIC NUMBER THEORY 

LECTURE 8 NOTES 

1. Section 4.1 

We say a set S ⊂ Rn is discrete if the topology induced on S is the discrete 
topology. Check that this is equivalent to the definition in the book (every 
compact subset K of Rn intersects S in a finite set). 

A lattice is a discrete subgroup Λ of Rn of rank n as a Z-module. 

Proof of Minkowski’s theorem. Translate all the parts of S to a fixed fundamen
tal parallelopiped. Since the sum of volumes of the translates is larger than the 
volume of the fundamental domain, two of the portions must overlap. The dif
ference of corresponding points in two overlapping portions gives a vector x − y 
in the lattice, for x, y ∈ S. � 

For a number field K of degree n = r1 + 2r2 over Q, it follows from dimQK = 
n = dimRRr1 that K ⊗Q R ∼ Rr1 × Cr2 , although non-canonically (there × Cr2 = 
are choices made in the canonical embedding!) 

We’ll see a version for tensoring with the non-archimedean completions of Q 
later. 

2. Section 4.3 

Example. Consider the field K = Q(α), where α is the unique real root of 
X3 − X − 1. We calculate that Z[α] has discriminant −23, which is square-
free. This implies that OK = Z[α], since otherwise the (absolute) discriminant 
of OK would be 23/N2 for some integer N > 1, and could not be an integer, 
which is impossible. 

Now let’s determine the class group. We have r1 = r2 = 1. By the proof of 
Theorem 2, we need only look at ideals a of norm Na ≤ 4 3! 

√
23 ≈ 1.357. Since 

π 27 
the norm is an integer, it must be 1. So a = OK which is principal. Therefore 
the class group is trivial and OK is a PID. 
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