ALGEBRAIC NUMBER THEORY

LECTURE 11 NOTES

First we'll prove the proposition from last time:

Proposition 1. Let A be a Dedekind domain with fraction field K. Let L/K be a finite separable extension, and B the integral closure of A in L. Assume B is monogenic over A, i.e. $B = A[\alpha]$ for some $\alpha \in B$. Then let $f(X) \in A[X]$ be the minimal polynomial of α over K. Let \mathfrak{p} be a prime of A and let \overline{f} be the reduction of f mod \mathfrak{p} . If \overline{f} factors as

$$\overline{f}[X] = \overline{P}_1(X)^{e_1} \dots \overline{P}_r(X)^{e_r}$$

where $P_1, \ldots, P_r \in (A/\mathfrak{p})[X]$ are irreducible and monic, then

$$\mathfrak{p}B=\mathfrak{B}_1^{e_1}\ldots\mathfrak{B}_r^e$$

where $\mathfrak{B}_i = \mathfrak{p}B + P_i(\alpha)B$, the ramification index of \mathfrak{B}_i is e_i , and the residue degree of \mathfrak{B}_i is $f_i = \deg \overline{P_i}$.

Proof. Let \overline{P} be an irreducible factor of \overline{f} , let $\overline{\alpha}$ be a root of \overline{P} (in the algebraic closure of $\overline{A} = A/\mathfrak{p}$), and let \mathfrak{B} be the prime of B which is the kernel of the map

$$A[\alpha] \to \overline{A}[\overline{\alpha}]$$

(the right hand side is a field). It is clear that $\mathfrak{p}B + P(\alpha)B$ is contained in \mathfrak{B} . Conversely, if $g(\alpha) \in \mathfrak{B}$, then $\overline{g}(\overline{al}) = 0$, so $\overline{g} = \overline{Ph}$ for some $\overline{h} \in \overline{A}[X]$ since \overline{P} is the minimal polynomial of $\overline{\alpha}$. Then $g - Ph \in A[X]$ must actually have coefficients in \mathfrak{p} , so $g(\alpha) \in P(\alpha)B + \mathfrak{p}B$. So we do have $\mathfrak{B} = \mathfrak{p}B + P(\alpha)B$. It's clear that get exactly all the primes in the factorization of \mathfrak{p} in this way, for this construction gives a prime \mathfrak{B} of B lying above \mathfrak{p} , and conversely, if \mathfrak{B} lies above \mathfrak{p} , then B/\mathfrak{B} is a field extension of A/\mathfrak{p} generated by the image of α in B/\mathfrak{B} .

It's clear that the residue degree $[B/\mathfrak{B}_i : A/\mathfrak{p}]$ of \mathfrak{B}_i is $f_i = \deg \overline{\alpha}_i$ (over \overline{A}) = deg \overline{P}_i . Now let e'_i be the ramification index of \mathfrak{B}_i , so that $\mathfrak{p}B = \mathfrak{B}_1^{e_1} \dots B_r^{e_r}$. Since $f(\alpha) = 0$ and $f(X) - P_1(X)^{e_1} \dots P_r(X)^{e_r} \in \mathfrak{p}A[X]$, it follows that

$$P_1(\alpha)^{e_1} \dots P_r(\alpha)^{e_r} \in \mathfrak{p}B$$

But we also have $\mathfrak{B}_i^{e_i} = (\mathfrak{p}b + P_i(\alpha)B)^{e_i} \subset \mathfrak{p}B + P_i(\alpha)^{e_i}B$ for every *i*. Multiplying these gives

$$\mathfrak{B}_{1}^{e_{1}}\ldots\mathfrak{B}_{r}^{e_{r}} \subset (\mathfrak{p}B+P_{1}(\alpha)^{e_{1}}B)\ldots(\mathfrak{p}B+P_{r}(\alpha)^{e_{r}}B) \\ \subset \mathfrak{p}B+P_{1}(\alpha)^{e_{1}}P_{2}(\alpha)^{e_{2}}\ldots P_{r}(\alpha)^{e_{r}}$$

LECTURE 11 NOTES

$$=\mathfrak{p}B=\mathfrak{B}_1^{e_1'}\ldots\mathfrak{B}_r^{e_r'}$$

which implies $e_i \ge e'_i$ for each *i*. But we know that $\sum e_i f_i = \deg \overline{f} = \deg f = [E:F] = \sum e'_i f_i$, which forces $e_i = e'_i$ for all *i*.

1. Section 5.3

If L/K is an extension of number fields, we define $D_{L/K}$ to be the discriminant ideal of \mathcal{O}_L over \mathcal{O}_K .

The main result of this section says that for a finite separable extension L/K, where K = Frac(A) for a Dedekind domain A, and B the integral closure of A in L, a prime **p** of A ramifies in B iff it divides the discriminant $D_{B/A}$.

We can use this example to compute which primes which ramify in quadratic or cyclotomic fields, in particular.

Example. If $d \equiv 2, 3 \mod 4$ is squarefree, then the discriminant of $\mathbb{Q}(\sqrt{d})$ is 4d. So the prime 2 ramifies in the quadratic field. We can check that $(2) = (2, \sqrt{d})^2$ if $d \equiv 2 \mod 4$ and $1(2) = (2, 1 + \sqrt{d})^2$ if $d \equiv 3 \mod 4$.

The discriminants D which are equal to d if $d \equiv 1 \mod 4$ and squarefree and 4d if $d \equiv 2, 3 \mod 4$ and squarefree, are called *fundamental discriminants*.

Example. For the cyclotomic field, $\mathbb{Q}(\zeta_{p^r})$, the discriminant is a power of p. So the only prime which ramifies is p, and p ramifies completely: $(p) = (1 - \zeta_{p^r})^{[\mathbb{Q}(\zeta_{p^r}):\mathbb{Q}]}$. This follows from using $(1 - \zeta_{p^r}) = (1 - \zeta_{p^r})$ as ideals whenever k is coprime to p.

2. Section 5.4

Quadratic extensions are monogenic, so we can apply our proposition to figure out how primes decompose.

- (1) $d \equiv 2, 3 \mod 4$. Then $\alpha = \sqrt{d}$ generates the ring of integers. Its minimal polynomial is $X^2 d$, whose discriminant is 4d. So p ramifies iff p|4d (i.e. $X^2 d$ is a square mod p. Note that for p = 2, we either get X^2 or $X^2 + 1 \equiv (X + 1)^2 \mod 2$). Now if p doesn't divide 4d, then p splits as $\mathfrak{p}_1\mathfrak{p}_2$ (with $e(\mathfrak{p}_i) = 1, f(\mathfrak{p}_i) = 1$) iff $X^2 d \mod p$ has two roots in \mathbb{F}_p , i.e. iff d is a quadratic residue mod p. Otherwise p is inert (remains prime), with e = 1, f = 2.
- (2) $d \equiv 1 \mod 4$. Then $\alpha = (1 + \sqrt{d})/2$ generates the ring of integers, and its minimal polynomial is $X^2 X + (1 d)/4$, whose discriminant is d. So p ramifies iff p|d. Otherwise, we calculate as follows: if p = 2 then p splits iff $(1 d)/4 \equiv 0 \mod 2$ iff $d \equiv 1 \mod 8$. If p is odd then the condition is as before: p splits iff d is a quadratic residue mod p.

ALGEBRAIC NUMBER THEORY

3. EXTENSIONS OF LOCAL FIELDS

Let K be a nonarchimedean local field: for us, a finite extension of \mathbb{Q}_p . Let L/K be a finite extension (separable since K has characteristic 0). Let $\mathfrak{p} = (\pi)$ be the prime ideal of $\mathfrak{o} = \mathcal{O}_K$, where $\pi = \pi_K$ is a uniformizer. Then there is only one prime \mathfrak{B} above \mathfrak{p} , since L is a nonarchimedean local field too (unique extension of the valuation), so \mathcal{O}_L is a DVR and has a unique nonzero prime ideal. So $\mathfrak{p}\mathcal{O}_L = \mathfrak{B}^e$, where f =residue class degree of \mathfrak{B} satisfies ef = n := [L : K]. Now if e = 1, f = n we say the extension is unramified, and if e = n, f = 1 we say the extension is totally ramified.

Proposition 2. There is only one unramified extension of degree n of K.

Proof. Let $\kappa = \mathcal{O}_K/\mathfrak{p}$ be the residue field of \mathcal{O}_K . It is a finite field \mathbb{F}_q , with q a power of p (since if K is a finite extension of \mathbb{Q}_p , κ is a finite extension of $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p$). Now if L/K is an unramified extension of degree n, we see that $[\mathcal{O}_L/\mathfrak{B} : \mathcal{O}_K/\mathfrak{p}] = f = n$. So $\mathcal{O}_L/\mathfrak{B} \cong \mathbb{F}_q^n$, the unique extension of \mathbb{F}_q of degree n. Now fix a generator $\overline{\alpha}$ of \mathbb{F}_{q^n} over \mathbb{F}_q and let $\overline{f} \in \mathbb{F}_q[X]$ be its minimal polynomial. Then f has degree n and is separable, since the extension of finite fields is separable (finite fields are perfect). Let f be a lift of \overline{f} to $\mathcal{O}_K[X]$ and choose it to be monic (and hence of degree n). Then by Hensel's lemma applied to \mathcal{O}_L and its residue field, f has a root α in \mathcal{O}_L . This α , being of degree n, must generate the field L over K. Therefore this L must be isomorphic to K[X]/(f). Conversely, it is an easy check that K[X]/(f) is unramified of degree $n = \deg f$. Since the construction of f depends only on K and on n, this shows that L must be unique once these are fixed. In other words, there is exactly one unramified extension of K of every degree.

Now let's look at the totally ramified case. On the homework, you will show that totally ramified extensions are given by specifying an Eisenstein polynomial

$$X^n + a_{n-1}X^{n-1} + \dots + a_0$$

with $\pi | a_i$ for all *i*, and $\pi^2 \not| a_0$; this is the minimal polynomial of a uniformizer of \mathcal{O}_L .

Combining these, one can show that there are only finitely many extensions of degree n of a nonarchimedean local field K. The proof uses the following argument, which is a corollary of Krasner's lemma (Problem 4 on Problem Set 4).

Let $f, g \in K[X]$ be monic polynomials. Define |f| to be the maximum of the absolute values of the coefficients of f. If |f| is bounded then the absolute values of the roots of f are also bounded (for instance, by looking at the Newton polygon). Now fix f, and suppose |f - g| is small. Then if β is any root of g, we have that $|f(\beta) - g(\beta)| = |f(\beta)|$ is small. So β must be close to a root of f, since $f(\beta) = \prod (\beta - \alpha_i)$ where α_i are the roots of f. As β comes close to say $\alpha = \alpha_1$,

LECTURE 11 NOTES

its distance from the other roots of f approaches the distance of α_1 from ther other roots, so it is bounded from below. We say that β belongs to α . Now if f is irreducible and g is sufficiently close to f, then Krasner's lemma applied to any root β of g shows that $\alpha \in K(\beta)$, where α is the root of f to which β belongs. But since deg g = deg f, we must have $K(\alpha) = K(\beta)$ and g is irreducible as well. So this tells us that polynomials which are close enough to a given irreducible polynomial f are also irreducible and generate the same extension. 18.786 Topics in Algebraic Number Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.