ALGEBRAIC NUMBER THEORY

LECTURE 11 NOTES

First we'll prove the proposition from last time:
Proposition 1. Let A be a Dedekind domain with fraction field K. Let L / K be a finite separable extension, and B the integral closure of A in L. Assume B is monogenic over A, i.e. $B=A[\alpha]$ for some $\alpha \in B$. Then let $f(X) \in A[X]$ be the minimal polynomial of α over K. Let \mathfrak{p} be a prime of A and let \bar{f} be the reduction of $f \bmod \mathfrak{p}$. If \bar{f} factors as

$$
\bar{f}[X]=\bar{P}_{1}(X)^{e_{1}} \ldots \bar{P}_{r}(X)^{e_{r}}
$$

where $P_{1}, \ldots, P_{r} \in(A / \mathfrak{p})[X]$ are irreducible and monic, then

$$
\mathfrak{p} B=\mathfrak{B}_{1}^{e_{1}} \ldots \mathfrak{B}_{r}^{e_{r}}
$$

where $\mathfrak{B}_{i}=\mathfrak{p} B+P_{i}(\alpha) B$, the ramification index of \mathfrak{B}_{i} is e_{i}, and the residue degree of \mathfrak{B}_{i} is $f_{i}=\operatorname{deg} \bar{P}_{i}$.

Proof. Let \bar{P} be an irreducible factor of \bar{f}, let $\bar{\alpha}$ be a root of \bar{P} (in the algebraic closure of $\bar{A}=A / \mathfrak{p}$), and let \mathfrak{B} be the prime of B which is the kernel of the map

$$
A[\alpha] \rightarrow \bar{A}[\bar{\alpha}]
$$

(the right hand side is a field). It is clear that $\mathfrak{p} B+P(\alpha) B$ is contained in \mathfrak{B}. Conversely, if $g(\alpha) \in \mathfrak{B}$, then $\bar{g}(\overline{a l})=0$, so $\bar{g}=\overline{P h}$ for some $\bar{h} \in \bar{A}[X]$ since \bar{P} is the minimal polynomial of $\bar{\alpha}$. Then $g-P h \in A[X]$ must actually have coefficients in \mathfrak{p}, so $g(\alpha) \in P(\alpha) B+\mathfrak{p} B$. So we do have $\mathfrak{B}=\mathfrak{p} B+P(\alpha) B$. It's clear that get exactly all the primes in the factorization of \mathfrak{p} in this way, for this construction gives a prime \mathfrak{B} of B lying above \mathfrak{p}, and conversely, if \mathfrak{B} lies above \mathfrak{p}, then B / \mathfrak{B} is a field extension of A / \mathfrak{p} generated by the image of α in B / \mathfrak{B}.

It's clear that the residue degree $\left[B / \mathfrak{B}_{i}: A / \mathfrak{p}\right]$ of \mathfrak{B}_{i} is $f_{i}=\operatorname{deg} \bar{\alpha}_{i}$ (over \bar{A}) $=\operatorname{deg} \bar{P}_{i}$. Now let e_{i}^{\prime} be the ramification index of \mathfrak{B}_{i}, so that $\mathfrak{p} B=\mathfrak{B}_{1}^{e_{1}} \ldots B_{r}^{e_{r}}$. Since $f(\alpha)=0$ and $f(X)-P_{1}(X)^{e_{1}} \ldots P_{r}(X)^{e_{r}} \in \mathfrak{p} A[X]$, it follows that

$$
P_{1}(\alpha)^{e_{1}} \ldots P_{r}(\alpha)^{e_{r}} \in \mathfrak{p} B
$$

But we also have $\mathfrak{B}_{i}^{e_{i}}=\left(\mathfrak{p} b+P_{i}(\alpha) B\right)^{e_{i}} \subset \mathfrak{p} B+P_{i}(\alpha)^{e_{i}} B$ for every i. Multiplying these gives

$$
\begin{aligned}
\mathfrak{B}_{1}^{e_{1}} \ldots \mathfrak{B}_{r}^{e_{r}} & \subset\left(\mathfrak{p} B+P_{1}(\alpha)^{e_{1}} B\right) \ldots\left(\mathfrak{p} B+P_{r}(\alpha)^{e_{r}} B\right) \\
& \subset \mathfrak{p} B+P_{1}(\alpha)^{e_{1}} P_{2}(\alpha)^{e_{2}} \ldots P_{r}(\alpha)^{e_{r}}
\end{aligned}
$$

$$
=\mathfrak{p} B=\mathfrak{B}_{1}^{e_{1}^{\prime}} \ldots \mathfrak{B}_{r}^{e_{r}^{\prime}}
$$

which implies $e_{i} \geq e_{i}^{\prime}$ for each i. But we know that $\sum e_{i} f_{i}=\operatorname{deg} \bar{f}=\operatorname{deg} f=$ $[E: F]=\sum e_{i}^{\prime} f_{i}$, which forces $e_{i}=e_{i}^{\prime}$ for all i.

1. Section 5.3

If L / K is an extension of number fields, we define $D_{L / K}$ to be the discriminant ideal of \mathcal{O}_{L} over O_{K}.

The main result of this section says that for a finite separable extension L / K, where $K=\operatorname{Frac}(A)$ for a Dedekind domain A, and B the integral closure of A in L, a prime \mathfrak{p} of A ramifies in B iff it divides the discriminant $D_{B / A}$.

We can use this example to compute which primes which ramify in quadratic or cyclotomic fields, in particular.

Example. If $d \equiv 2,3 \bmod 4$ is squarefree, then the discriminant of $\mathbb{Q}(\sqrt{d})$ is $4 d$. So the prime 2 ramifies in the quadratic field. We can check that $(2)=(2, \sqrt{d})^{2}$ if $d \equiv 2 \bmod 4$ and $1(2)=(2,1+\sqrt{d})^{2}$ if $d \equiv 3 \bmod 4$.

The discriminants D which are equal to d if $d \equiv 1 \bmod 4$ and squarefree and $4 d$ if $d \equiv 2,3 \bmod 4$ and squarefree, are called fundamental discriminants.

Example. For the cyclotomic field, $\mathbb{Q}\left(\zeta_{p^{r}}\right)$, the discriminant is a power of p. So the only prime which ramifies is p, and p ramifies completely: $(p)=\left(1-\zeta_{p^{r}}\right)^{\left[\mathbb{Q}\left(\zeta_{p^{r}}\right): \mathbb{Q}\right]}$. This follows from using $\left(1-\zeta_{p^{r}}^{k}\right)=\left(1-\zeta_{p^{r}}\right)$ as ideals whenever k is coprime to p.

2. SECTION 5.4

Quadratic extensions are monogenic, so we can apply our proposition to figure out how primes decompose.
(1) $d \equiv 2,3 \bmod 4$. Then $\alpha=\sqrt{d}$ generates the ring of integers. Its minimal polynomial is $X^{2}-d$, whose discriminant is $4 d$. So p ramifies iff $p \mid 4 d$ (i.e. $X^{2}-d$ is a square $\bmod p$. Note that for $p=2$, we either get X^{2} or $\left.X^{2}+1 \equiv(X+1)^{2} \bmod 2\right)$. Now if p doesn't divide $4 d$, then p splits as $\mathfrak{p}_{1} \mathfrak{p}_{2}\left(\right.$ with $\left.e\left(\mathfrak{p}_{i}\right)=1, f\left(\mathfrak{p}_{i}\right)=1\right)$ iff $X^{2}-d \bmod p$ has two roots in \mathbb{F}_{p}, i.e. iff d is a quadratic residue $\bmod p$. Otherwise p is inert (remains prime), with $e=1, f=2$.
(2) $d \equiv 1 \bmod 4$. Then $\alpha=(1+\sqrt{d}) / 2$ generates the ring of integers, and its minimal polynomial is $X^{2}-X+(1-d) / 4$, whose discriminant is d. So p ramifies iff $p \mid d$. Otherwise, we calculate as follows: if $p=2$ then p splits iff $(1-d) / 4 \equiv 0 \bmod 2$ iff $d \equiv 1 \bmod 8$. If p is odd then the condition is as before: p splits iff d is a quadratic residue $\bmod p$.

3. Extensions of local fields

Let K be a nonarchimedean local field: for us, a finite extension of \mathbb{Q}_{p}. Let L / K be a finite extension (separable since K has characteristic 0). Let $\mathfrak{p}=(\pi)$ be the prime ideal of $\mathfrak{o}=\mathcal{O}_{K}$, where $\pi=\pi_{K}$ is a uniformizer. Then there is only one prime \mathfrak{B} above \mathfrak{p}, since L is a nonarchimedean local field too (unique extension of the valuation), so \mathcal{O}_{L} is a DVR and has a unique nonzero prime ideal. So $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{B}^{e}$, where $f=$ residue class degree of \mathfrak{B} satisfies ef $=n:=[L: K]$. Now if $e=1, f=n$ we say the extension is unramified, and if $e=n, f=1$ we say the extension is totally ramified.

Proposition 2. There is only one unramified extension of degree n of K.
Proof. Let $\kappa=\mathcal{O}_{K} / \mathfrak{p}$ be the residue field of \mathcal{O}_{K}. It is a finite field \mathbb{F}_{q}, with q a power of p (since if K is a finite extension of \mathbb{Q}_{p}, κ is a finite extension of $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{F}_{p}$). Now if L / K is an unramified extension of degree n, we see that $\left[\mathcal{O}_{L} / \mathfrak{B}: \mathcal{O}_{K} / \mathfrak{p}\right]=f=n$. So $\mathcal{O}_{L} / \mathfrak{B} \cong \mathbb{F}_{q^{n}}$, the unique extension of \mathbb{F}_{q} of degree n. Now fix a generator $\bar{\alpha}$ of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} and let $\bar{f} \in \mathbb{F}_{q}[X]$ be its minimal polynomial. Then f has degree n and is separable, since the extension of finite fields is separable (finite fields are perfect). Let f be a lift of \bar{f} to $\mathcal{O}_{K}[X]$ and choose it to be monic (and hence of degree n). Then by Hensel's lemma applied to \mathcal{O}_{L} and its residue field, f has a root α in \mathcal{O}_{L}. This α, being of degree n, must generate the field L over K. Therefore this L must be isomorphic to $K[X] /(f)$. Conversely, it is an easy check that $K[X] /(f)$ is unramified of degree $n=\operatorname{deg} f$. Since the construction of f depends only on K and on n, this shows that L must be unique once these are fixed. In other words, there is exactly one unramified extension of K of every degree.

Now let's look at the totally ramified case. On the homework, you will show that totally ramified extensions are given by specifying an Eisenstein polynomial

$$
X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}
$$

with $\pi \mid a_{i}$ for all i, and $\pi^{2} X a_{0}$; this is the minimal polynomial of a uniformizer of \mathcal{O}_{L}.

Combining these, one can show that there are only finitely many extensions of degree n of a nonarchimedean local field K. The proof uses the following argument, which is a corollary of Krasner's lemma (Problem 4 on Problem Set 4).

Let $f, g \in K[X]$ be monic polynomials. Define $|f|$ to be the maximum of the absolute values of the coefficients of f. If $|f|$ is bounded then the absolute values of the roots of f are also bounded (for instance, by looking at the Newton polygon). Now fix f, and suppose $|f-g|$ is small. Then if β is any root of g, we have that $|f(\beta)-g(\beta)|=|f(\beta)|$ is small. So β must be close to a root of f, since $f(\beta)=\prod\left(\beta-\alpha_{i}\right)$ where α_{i} are the roots of f. As β comes close to say $\alpha=\alpha_{1}$,
its distance from the other roots of f approaches the distance of α_{1} from ther other roots, so it is bounded from below. We say that β belongs to α. Now if f is irreducible and g is sufficiently close to f, then Krasner's lemma applied to any root β of g shows that $\alpha \in K(\beta)$, where α is the root of f to which β belongs. But since $\operatorname{deg} g=\operatorname{deg} f$, we must have $K(\alpha)=K(\beta)$ and g is irreducible as well. So this tells us that polynomials which are close enough to a given irreducible polynomial f are also irreducible and generate the same extension.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

