# ALGEBRAIC NUMBER THEORY 

LECTURE 10 NOTES

## 1. Section 5.1

Example (Rings of fractions). Let $A$ be an integral domain.
(1) If $S=A \backslash\{0\}$, we get the entire field of fractions of $A$.
(2) If $S=\left\{1, x, x^{2}, \ldots\right\}$, we get the localization $A_{x}=\left\{a / x^{n}: a \in A, n \geq 0\right\}$ of $A$ in $x$. For instance, if $A=\mathbb{Z}$ and $x=p$ a prime, we get rational numbers whose denominators are powers of $p$. Note that in this particular case, we will not call the ring $\mathbb{Z}_{p}$, because of possible confusion with the $p$-adic integers, which is a completely different ring.
(3) If $S=A \backslash \mathfrak{p}$, where $\mathfrak{p}$ is a prime ideal of $A$, we get the localization of $A$ in $\mathfrak{p}, A_{\mathfrak{p}}=\{a / s: a \in A, s \notin \mathfrak{p}\}$. For instance, if $A=\mathbb{Z}, \mathfrak{p}=(p)$ then we get $S^{-1} A=\{a / b: p \nmid b\} \subset \mathbb{Q}$.

Example (Primes in rings of fractions). The primes of $S^{-1} A$ are in bijective correspondence with primes of $A$ not intersecting $A$. For example, if $A=\mathbb{Z}$ and $S=\left\{2^{m} 3^{n}: m, n \geq 0\right\}$, then (2) and (3) are not primes in $S^{-1} A$ any more, since they equal the unit ideal. But $(p)$ is still a prime in $S^{-1} A$ for $p \neq 2,3$.

Localization (the process of taking rings of fractions) commutes with taking quotients, in the following sense:

Proposition 1. If $S \cap \mathfrak{a}=\phi$ then

$$
\frac{S^{-1} A}{\mathfrak{a} S^{-1} A} \cong \bar{S}^{-1}\left(\frac{A}{\mathfrak{a}}\right)
$$

where $\bar{S}$ is the image of $S$ in $A / \mathfrak{a}$.
Proof. Homework.
Localization also commutes with completion in the following sense: recallt that if $A$ is a Dekekind domain with fraction field $K$, and pa prime ideal of $A$, then $\mathfrak{p}$ defines a valuation of $K$ by

$$
|x|_{p}=c^{-v_{\mathfrak{p}}(x)}
$$

where $c>1$ is any real number, and $v_{\mathfrak{p}}(x)$ is the power of $\mathfrak{p}$ dividing the ideal $(x)$ (different choices of $c$ give equivalent valuations).

Then the valuation ring of $K$ with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$ is $A_{\mathfrak{p}}$, the localization of $A$ in $\mathfrak{p}$. This is a DVR. The completion of $K$ is $\widehat{K}$, say, and the valuation ring of $\widehat{K}$ is the completion $\widehat{A}$ of $A$ with respect to $\left|\left.\right|_{\mathfrak{p}}\right.$, which is the same as the completion of $A_{p}$.

So we have $\widehat{A_{\mathfrak{p}}} \cong \widehat{A} \cong(\widehat{A})_{\mathfrak{p} \widehat{A}}$, the last isomorphism following from the fact that any element of $\widehat{A} \backslash \mathfrak{p} \widehat{A}$ is a unit, so localization doesn't affect anything.

Example. The completion of $\mathbb{Z}_{(p)}=\{a / b: p \nmid b\}$ is just $\mathbb{Z}_{p}$, the $p$-adic integers, the completion of $\mathbb{Z}$ with respect to the $p$-adic valuation $\left|\left.\right|_{p}\right.$.

## 2. SECTION 5.2

The following proposition, which we will prove next time, is very useful for studying the decomposition of primes in number fields.

Proposition 2. Let $A$ be a Dedekind domain with fraction field $K$. Let $L / K$ be a finite separable extension, and $B$ the integral closure of $A$ in $L$. Assume $B$ is monogenic over $A$, i.e. $B=A[\alpha]$ for some $\alpha \in B$. Then let $f(X) \in A[X]$ be the minimal polynomial of $\alpha$ over $K$. Let $\mathfrak{p}$ be a prime of $A$ and let $\bar{f}$ be the reduction of $f \bmod \mathfrak{p}$. If $\bar{f}$ factors as

$$
\bar{f}[X]=\bar{P}_{1}(X)^{e_{1}} \ldots \bar{P}_{r}(X)^{e_{r}}
$$

where $P_{1}, \ldots, P_{r} \in(A / \mathfrak{p})[X]$ are irreducible and monic, then

$$
\mathfrak{p} B=\mathfrak{B}_{1}^{e_{1}} \ldots \mathfrak{B}_{r}^{e_{r}}
$$

where $\mathfrak{B}_{i}=\mathfrak{p} B+P_{i}(\alpha) B$, the ramification index of $\mathfrak{B}_{i}$ is $e_{i}$, and the residue degree of $\mathfrak{B}_{i}$ is $f_{i}=\operatorname{deg} \bar{P}_{i}$.

Example. Let $K=\mathbb{Q}(\sqrt[3]{2})$. You showed on the homework that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{2}]$. So $\mathcal{O}_{K}$ is monogenic over $\mathbb{Z}$, and we can use this to compute the decomposition of integer primes, using the above proposition with $\alpha=\sqrt[3]{2}$. The minimal polynomial of $\alpha$ is $X^{3}-2$. It's reduction $\bmod 5$ factors as

$$
X^{3}-2 \equiv(X+2)\left(X^{2}-2 X-1\right) \bmod 5
$$

So the prime $5=\mathfrak{p}_{1} \mathfrak{p}_{2}$ with $e\left(\mathfrak{p}_{1}\right)=1, f\left(\mathfrak{p}_{1}\right)=1, e\left(\mathfrak{p}_{2}\right)=1, f\left(\mathfrak{p}_{2}\right)=2$. Modulo 2 the polynomial reduces to $X^{3}$, so 2 factors as $\mathfrak{p}^{3}$, where $\mathfrak{p}=(\alpha)$.

Now most extensions of number fields $L / K$ do not have a ring of integers that's monogenic. Nevertheless, it turns out that the localizations are monogenic at all but finitely many primes: if we choose $\alpha \in \mathcal{O}_{L}$ such that $K(\alpha)=L$, then $\mathbb{Z}[\alpha]_{\mathfrak{p}}=\left(\mathcal{O}_{L}\right)_{\mathfrak{p}}$ for all but finitely many primes $\mathfrak{p} \subset O_{K}$ (and we can say what this exceptional finite subset is). This enables us to study prime decomposition rather effectively, since the prime decomposition above $\mathfrak{p}$ is not affected by localizing at $\mathfrak{p}$.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

