18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 9, due Thursday, April 27

- 1. Janusz p. 118, exercise 2.
- 2. Janusz p. 118, exercise 3.
- 3. Janusz p. 118, exercise 4. Optional (not to be turned in): the other exercises in that section.
- 4. Let K be a finite extension of \mathbb{Q}_p . Let $f(x) = x^n + \sum_{i=0}^{n-1} f_i x^i$ be a monic polynomial of degree n over K, which factors completely over K with distinct roots r_1, \ldots, r_n . Prove that for any $\epsilon > 0$, there exists $\delta > 0$ such that if $g(x) = x^n + \sum_{i=0}^{n-1} g_i x^i$ is a monic polynomial of degree n such that $|f_i g_i| < \delta$, then g has n roots s_1, \ldots, s_n in K, which can be labeled so that $|r_i s_i| < \epsilon$ for $i = 1, \ldots, n$. That is, the roots of f vary continuously with the coefficients. (If the roots are not distinct, the roots of g may only lie in an extension of K, but otherwise the conclusion still holds.)
- 5. Let K be a finite extension of \mathbb{Q}_p . Prove Krasner's Lemma: if $\alpha_1, \ldots, \alpha_n \in \overline{K}$ are conjugates, and $\beta \in \overline{K}$ satisfies

$$|\alpha_1 - \beta| < |\alpha_1 - \alpha_i| \quad (i = 2, \dots, n),$$

then $K(\alpha_1) \subseteq K(\beta)$.

- 6. (Abhyankar's Lemma) Let K be a finite extension of \mathbb{Q}_p . A finite extension L/K is said to be tamely ramified if $e(\mathfrak{m}_L/\mathfrak{m}_K)$ is coprime to p. Let L_1, L_2 be tamely ramified extensions of K such that $e(\mathfrak{m}_{L_1}/\mathfrak{m}_K)$ divides $e(\mathfrak{m}_{L_2}/\mathfrak{m}_K)$. Prove that the compositum L_1L_2 is unramified over L_2 . (Hint: it is safe to check this after making an unramified extension of K, so you can assume L_1 and L_2 are both Kummer extensions.)
- 7. (Dwork) Let p be a prime number. Show that $\mathbb{Q}_p(\zeta_p) = \mathbb{Q}_p(\pi)$ for π a (p-1)-st root of -p. (Hint: either of the previous two exercises might be helpful, or you can explicitly construct a series in π converging to ζ_p .)
- 8. (Optional because it uses some topology, but strongly recommended) Let K be a number field. Let A_K be the subring of the product $\prod_v K_v$, where v runs over places and K_v is the completion at v, consisting of tuples (a_v) in which $a_v \in \mathfrak{o}_{K_v}$ for all but finitely many finite places v (no condition is imposed at infinite places). Give A_K the topology with a basis of open sets given by products $\prod_v U_v$, with U_v open in K_v and $U_v = \mathfrak{o}_{K_v}$ for all but finitely many finite v. Prove that K, which naturally embeds into A_K via the maps $K \hookrightarrow K_v$, is a discrete subgroup of A_K and that the quotient A_K/K is compact; that is, in some sense K is a "full lattice" in A_K . (Hint: start with Tykhonov's theorem that any product of compact spaces is compact.) The ring A_K is the ring of adèles of K; we'll likely see it again later. (There's a multiplicative analogue too; more on that later.)