LECTURE 7
Chain Complexes and Herbrand Quotients

Last time, we defined the Tate cohomology groups H°(G, M) and H'(G, M)
for cyclic groups. Recall that if G = Z/nZ with generator o, then a G-module is
an abelian group M with an automorphism o: M =+ M such that ¢” =idy;. Our
main example is when L/K is an extension of fields with Gal(L/K) = G, so that
both L and L* are G-modules. Then

n—1

H%(G, M) := MS/N(M) = Ker(1 — a)/{ Y oimime M}
i=0

HY(G, M) :=Ker(N)/(1 - o),

since an element of Ker(1— o) is fixed under the action of o, hence under the action
of G. Our goal was to compute, in the example given above, that #f[ 0 = n, using
long exact sequences.
We saw that if
0—-M-—-E—-N=0

was a short exact sequence of G-modules (that is, M, E, and N are abelian groups
equipped with an order-n automorphism compatible with these maps, and N =
E/M, so that M is fixed under the automorphism of N), then we had a long exact
sequence

H(G, M) — HY(G, E) — H(G,N) % H'(G, HY(G,E) — H'(G,N),

M) —
where the boundary map § lifts z € H°(N) = NY/N(N) to & € E, so that
(1 —0)i € Ker(N) C M, giving a class in H'(G, M).
Now, define a second boundary map
(7.1)

HY(G, M) - HY(G,E) » H'(G,N) % HY(G, M) — H°(G,

)
which lifts z € H'(G, N) to an element # € E. Then N(&) = Z:Lio o7 € MY,

E
since it is killed by 1 — o, and so it defines a class in H(G, M). We check the
following:

— H°(G, N),

Cram 7.1. The boundary map 0 is well-defined.

PROOF. If # is another lift of x, then & —& € M since N = E /M, and therefore
S oi(@ — &) € N(M) is killed in HO(G, M). 0

CLAIM 7.2. The sequence in (7.1) is exact.

ProOOF. If z € H'(G, E), then N(z) = 0, so d(z) = 0 in H(G,M). If z €
Ker(0), then N(Z) = 0 for some lift € E of x, and «x is the image of Z.
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30 7. CHAIN COMPLEXES AND HERBRAND QUOTIENTS

If € H'(G,N) with lift # € E, then 8(x) = N(&) is zero in H(G, E) by
definition. If 2 € H(G, M) is 0 in H(G, E), then x € N(E), hence z € Im(d). [

Thus, we obtain a “2-periodic” exact sequence for Tate cohomology of cyclic
groups, motivating the following definition:

DEFINITION 7.3. For each ¢ € Z (both positive and negative), define

HO(G,M) ifi=0mod?2,

H G, M):=< .
( ) {HI(G,M) if i =1 mod 2.

This nice property does not hold for non-cyclic groups, so we will often attempt
to reduce cohomology to the case of cyclic groups.
As a reformulation, write
n—1 _1i n—1 0_1',

(7.2) S T 6 Gy = Ty 2T

and observe that this forms what we will call a chain complex:

DEFINITION 7.4. A chain complex X* is a sequence
—2 -1 1 2
LA A o & A 2
such that d*t'd’ = 0 for all i € Z (that is, Ker(d**t!) D Ker(d?), but we need not
have equality as for an exact sequence). Then define the ith cohomology of X* as
H'(X*) := Ker(d")/ Im(d"™ ).

Thus, a long exact sequence is a type of chain complex. We note that (7.2)
satisfies this definition as

n—1 n—1 n—1
(l—U)ZU’x: Zazx— Za“rla?:Nx—Nx:O
=0 =0 i=0

and the two maps clearly commute. The Tate cohomology groups are then the
cohomologies of this chain complex, which makes it clear that they are 2-periodic.

DEFINITION 7.5. The Herbrand quotient or Euler characteristic of a G-module
M is N
#HY(G,M
vy = PG,
#H(G, M)
which is only defined when both are finite.

R This definition generAalizes our previous discussion of the trivial G-module, as
H°(G,M) = M/n and H'(G, M) = M|[n], though note that the boundary maps
from even to odd cohomologies will be zero.

LEMMA 7.6. Let
0—-M-—-E—-N-—=0

be a short exact sequence of G-modules. If x is defined for two of the three G-

modules, then it is defined for all three, in which case x(M) - x(N) = x(E).
PrOOF. Construct a long exact sequence
0 — Ker(a) » H'(M) & HY(E) — H°(N) —

S HY (M) — HY(E) 2 B (N) - Coker(8) — 0.
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Since the second boundary map yields an exact sequence
o (e L ayNy S a0 = BO(E),
we have
Ker(a) = Im(d) = H'(N)/Ker(d) = H'(N)/Im(8) = Coker().

Applying Lemma 6.4 and canceling #Ker(a) and #Coker(3) then yields the desired
result (as for Lemma 6.7). O

A quick digression about finiteness:
CLAIM 7.7. The groups H(G, M) and H (G, M) are n-torsion.

PrROOF. Let © € MS. Then N(z) = Y/ ole = " o = nz. Thus,
nz € N(M), and H°(G, M) is n-torsion. Now let = € Ker(N). Then

n n

nx:nx—Nx:Z(lfgi)x:(1,0)2(1+,,,+0i71)x,

i=1 =1
hence nz € (1 — )M, and H'(G, M) is n-torsion as well. O
Thus, finite generation of I;TO(G, M) and ﬁl(G, M) implies finiteness. Now, we

recall that our goal was to show that #f[ O(L*) = n for a cyclic degree-n extension
of local fields L/K. We have the following refined claims:

CLAIM 7.8. Preserving the setup above,
(1) H'(L*) =0 (implying x(L*) = #H°(L*));
(2) x(0) =1;
(3) \(L¥) = .
PROOF. We first show that (2) implies (3). We have an exact sequence
15 0f 5 L* 5Z—0,
where v denotes the valuation. Then by Lemma 7.6, we have
X(L*)=x(0r) x(Z)=1-n=n
by (2), where we note that
H%(Z)=7%/NZ =17Z/nZ and HY(Z)=Ker(N)/(1—0)=0.
We now show (2).
LEMMA 7.9. If M is a finite G-module, then x(M) = 1.
ProoOr. We have exact sequences
0— M% = M =% Ker(N) = HY(G, M) — 0,

n—1 _i N
0 = Ker(N) — M == (G 5 {1°(G, M) — 0,

hence by Lemma 7.6,
#Ker(N) - #M = #M - #H(G, M),
#MC - #Ker(N) = #M - #H' (G, M),
and so #H°(G, M) = #H' (G, M) and x(M) =1 as desired. O
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The analogous statement is x(Or) = 1, where we regard Oy, as an additive
group. In fact, an even easier statement to establish is x(L) = 1. Intuitively, this
is because since we are working over the p-adic numbers, everything must be a
Q-vector space, hence n is invertible; but our cohomology groups are all n-torsion
by Claim 7.7, hence our cohomology groups must both vanish and (L) = 1.

By the normal basis theorem, if L/K is a finite Galois extension, we have

L~ ][] K = K[G]
geqG

as a K[G]-module, where G acts by permuting coordinates. This is because the
action of K (by homothety, as L is a K-vector space) commutes with the action of
G (which acts on L as a K-vector space), hence we have a K[G]-action on L.

CrLAaM 7.10. Let A be any abelian group, and A[G] :=[],cq A be a G-module

where G acts by permuting coordinates. If G is cyclic, then

H°(G,AlG)) = HY(G, A[G]) = 0.

geG

PrOOF. We reformulate the claim as follows: let R be a commutative ring,
so that R[G] is an (possibly non-commutative) R-algebra via the multiplicative

operation
(St (S i) = 3 ot

gea hea 9,heq
where we have let [h] € ngG R denote the element that is 1 in the h-coordinate,
and 0 otherwise. Thus, R[G]-modules are equivalent to R-modules equipped with
a homomorphism G — Autr(M). In particular, Z|G]-modules are equivalent to
G-modules.

Now, we have H%(G, A[G]) = A[G]% /N, where A[G]% is equivalent to a diag-
onally embedded A C [ . 4, and N((a,0,...,0)) = >_ . alg] which is equal to
the diagonal embedding of A, hence H°(G, A[G]) = 0.

Similarly, H'(G, A[G]) = Ker(N)/(1 = ¢), and

A[G] 2 Ker(N) = > " aglgl € A[G]: > ag =0
geG geG

Now, we may write a general element as Z;:Ol a;[0'], and choose b; such that
(1 — 0" "a; = (1 — 0)b; for each i. Then

n—1 n—1 n—1 n—1 n—1
1=0)) bilo']=> (1-0"Nailo’] =D aio’] = > ail] = aifo’],
i=0 i=0 i=0 i=0 i=0
hence Ker(N) C (1 — 0)A[G], and therefore H'(G, A[G]) = 0 as desired. O

Thus, we see that we cannot obtain interesting Tate cohomology in this manner.
Now we return to showing x(Or) = 1. The problem is that the normal basis
theorem does not apply as for L, that is, whereas L = K[G], we do not necessarily
have O ~ Ok|[G].

However, there does exist an open subgroup of O, with a normal basis. Choose
anormal basis {eq,...,e,} of L/K. For large enough N, we have n¥ey,..., Ve, €
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Op, where 7 is a uniformizer of L, hence they freely span some open subgroup of
Op. Because this subgroup, call it I', is finite index, we have

X(Ok) = x(I') = x(0k[G]) =11
by (6.2).

To show that x(Of) = 1 (a more complete proof will be provided in the
following lecture), observe that O; D T' ~ Ozr via G-equivalence, where I' is an
open subgroup (the proof of this fact uses the p-adic exponential). Then x(Of) =
x(I") = 1, as desired. O

REMARK 7.11. In this course, all rings and modules are assumed to be unital.
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