LECTURE 15

The Vanishing Theorem Implies Cohomological
LCFT

Last time, we reformulated our problem as showing that, for an extension L/K
of nonarchimedean local fields with Galois group G,

(15.1) (L)C ~ 79[ -2].

Thus, our new goal is to compute the Tate cohomology of L*. Recall that we have
let K™ denote the completion of the maximal unramified extension of K; we’d
like to use K"™ to compute this Tate cohomology.

Cram 15.1. If x € K" is algebraic over K (which may not be the case due
to completion), then K' := K(z) is unramified over K.

PROOF. As a finite algebraic extension of K, K’ is a local field, and we have
an embedding
OK//FKOK’ — OKum/pKOKum = ];;,

where k := Ok /px. So Ok /pr Ok is a field, hence uniformizers of K and K’ are
identical. O

CLAIM 15.2. (K")°=! = K| that is, the elements fived by (i.e., on which it
acts as the identity) the Frobenius automorphism o € G (obtained from the Frobenii
of each unramified extension, passed to the completion via continuity).

Recall that we have a short exact sequence

unr 1—o unr
0— K — K" — K",

which we may rewrite on multiplicative groups as

r—x/ox
1o KX = goonx 22800 prunex o

We showed that an element of K"™* can only be written as x/cx if it is a unit in
the ring of integers Ojunr; this map is an isomorphism on each of the associated
graded terms, hence on O ;.

Now, we’d like to explicitly construct the isomorphism in (15.1). Our first
attempt is as follows: let us assume that L/K is totally ramified (since we discussed
the unramified case last time, this is a rather mild assumption), so that L' =
L ®K K"". Then we have the following theorem, to be proved later.

THEOREM 15.3 (Vanishing Theorem). If L/ K is totally ramified, then the com-
plex (LW X )G s acyclic.

CLAIM 15.4. The vanishing theorem implies cohomological LCFT.
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PROOF. Assume L/K is totally ramified. We have the four-term exact sequence

(15.2) 1 5 LX — punex 22090 punx v og g

We may rewrite this as follows:

A
B L 0 — L} S punnx gy

l )

Coker(A — B) =0 0 Z 0— -+,

) Lx 0 00— -

[

where L™ is in degree —1. The final quasi-isomorphism to the homotopy cokernel
obtained from (15.2) follows from Claim 10.12, because A — B is an injection
(note that this holds in general for any four-term exact sequence). The term-wise
cokernel yields an injection

r—x/oT 7 uor,

[unr, X /L><

since, omitting the quotient, L™ is precisely the kernel of this map.
Now, we have a quasi-isomorphism

BtG _ hCOkeI'(Lunr’X l1—0o Lunr7><)tG ~ hCOker((Lunr,X)tG N (Lulﬂr,X)tG)7

so since (L"™*)*¢ is acyclic by the vanishing theorem, this homotopy cokernel is
as well by the long exact sequence on cohomology. Thus,

(L*[2))*“ = hCoker((L*[1])*“ — 0) = hCoker(A'“ — B'Y) ~ 7'¢,
as desired. O

Now suppose L/K is a general finite Galois extension with G := Gal(L/K)
(though we could handle the unramified and totally ramified cases separately, as any
extension is canonically a composition of such extensions). If L/K is unramified,
then

L®x K™ = H Junr
Les Kunr
canonically, indexed by such embeddings. In fact, the following holds:

THEOREM 15.5 (General Vanishing Theorem). [(L @ K" )*]*¢ is acyclic.

To understand the structure of L ® g K", note that we have an action of Zo
on the second factor and of G on the first; these two actions (i.e., @y — gr @y
and  ® y — = ® oy) clearly commute. Again, the points fixed under o are

L=Log K< Lok K™,

CLAIM 15.6. The following sequence is exact:

« TT/oT
e

1= L* = (Leg K'™) (Log K" - Z — 0.

PROOF. If x € K"™ is a unit, then oz is as well, so the map = — z/oz is
well-defined, and moreover, = is in its kernel if and only if z is fixed under the
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action of o, that is, x € K, and since L ® x K = L we obtain a unit of L, which
shows exactness of the left half. Now, the map to Z is defined by

(L QK Kunr)x 7

NL/I@N /
K ®K Kunr, X ,
—_———

Junr, X

where
Ny k(x) = H gx.
geG
Thus, its kernel is O u., which is precisely the image of x + x/oz. Moreover, the
map is surjective as 1 @ w — 1. O

Observe that if L/K is totally ramified, then this is just our extension from
before. Indeed, if we write L"™ = L @ K", then the ¢’s “match up,” that is,
the induced Frobenius automorphisms of L™ and K""" are identical as L and K
have the same residue field. The norm Ny, g : L""> — K" for this extension
satisfies vgunr 0 N = vpunr (such an extension is generated by the nth root of a
uniformizer of K, and then N(7'/") = 7).

Now suppose L/K is unramified of degree n. Fix an embedding L «— K"2*
and let o € Gal(L/K) also denote the Frobenius element of L/K. Then we have
an isomorphism

n—1

L oK Junr l> H Jounr
=0

; -1

@y ((o'z)- y)?zo ,
where the product is taken via our fixed embedding (note that this could be done
more canonically by taking the product over embeddings as before). We now ask:
what does the automorphism id ®c of L ® g K""" correspond to under this isomor-
phism? We have

TR0y (x-oy,00-0y,0%c-0y,...)=0c(c 'x-y,x-y,00-y,...),

so it is the action of o on the rotation to the right of the image of x ® y (note that o
doesn’t have finite order on K""", so this should either, which rules our rotation as
a possibility for the image of id ®c). Similarly, the norm map Ny /5 : [T K""* —
K% takes the product of all entries.

We’d like for some element (zg,...,Zn—1) € [[ K" to be in the image of
y/oy (i.e., the map in the middle of the exact sequence of Claim 15.6; here o refers to
the automorphism id ®o) if and only if [[2; € OFunr, that is, >~ v(x;) = 0. Recall

that the reverse implication is trivial, as we have shown that O .. M Ofune 18

surjective as it is at the associated graded level. For the forward direction, we have

Wos - - yn1) L (yo YL ) = (z0,21,...).

OYn—1 ’ UT/O ’
Thus,

Yo = 2o - 0Yn—1,
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2
Y1 =21 -0Yo = X1 -0X0 "0 Yn—1,

n—1 n
Yn—1 = Tp—-1'0Tp-2""°0 Zo* 0 Yn—1,

that is,
Yn—1 n—1

= Tp—-1"0Tp—2°-""0 Zo-
0"™"Yn—1
Note that everything here is an element of K", so we really do not have ¢™ = id!
Last time, we showed that we can do this if and only if the right-hand side is in
O unr, which is equivalent to saying that " v(x;) = 0. The general case of this
exact sequence is sort of a mix of the two.

We now compare these results with those from the last lecture. Assume the Van-
ishing Theorem. For an unramified extension L/K, we have two quasi-isomorphisms
between (L*)'¢ and Z[-2]'“, one from what we just did, and the other since
(OF ) ~ 0 implies (L*)'¢ ~ Z'C ~ (Z[-2])'¢ by cyclicity. We claim that these
two quasi-isomorphisms coincide. A sketch of the proof is as follows: we have
G = Z/nZ (with generator the Frobenius element), and a short exact sequence

0— Z— Z[G] =% Z[G] — Z — 0.

As shown in Problem 1(e) of Problem Set 7, Z[G]*“ ~ 0 is a quasi-isomorphism
(this is easy to show, and we've already shown it for cyclic groups). Thus, we
get Z'¢[2] ~ Z'“ and we claim that this is the same isomorphism that we get
from 2-periodicity of the complex. The proof is by a diagram chase. We have
(L @ K"™r)* =[] K"*, which is a finite product. Thus, the diagram

1 Lx (L®KKunr)><z'_m/aw(L®K Kunr)x 2w 7 0

[ Jm- ]
1 zZ -,z —d Z[G) < V4 0
N——

commutes, where € denotes the sum over the coordinates of Z[G]. This says precisely
that the isomorphisms obtained from both 4-term exact sequences coincide.

The upshot is that under LCFT, we have an isomorphism K* /NL* ~ Z/nZ by
which m — Frob. Thus, we have reduced LCFT to the Vanishing Theorem, which
we will prove in the next lecture.
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