Discussion of 18.786 (Spring 2016) homework set \#2

Darij Grinberg

March 24, 2016

1. Solution to problem

(b) We have $(-a b, b)=\underbrace{(a, b)}_{=-1} \underbrace{(-b, b)}_{=1}=-1$. Thus, neither $-a b$ nor b is a square in K.

We want to prove that every $d \in K$ admits a square root in $H_{a, b}$. So fix $d \in K$.
If d is a square in K, then we are done; hence, assume that it isn't. Thus, $d \in K^{\times}$and $d \notin\left(K^{\times}\right)^{2}$.

We notice that

$$
(x i+y j+z k)^{2}=a x^{2}+b y^{2}-a b z^{2} \quad \text { for any }(x, y, z) \in K^{3}
$$

In particular, $(z k)^{2}=-a b z^{2}$ for any $z \in K$. Thus, if $-a b d$ is a square - say, $-a b d=\mu^{2}$ for some $\mu \in K-$, then we have $d=-a b\left(\frac{\mu}{a b}\right)^{2}=\left(\frac{\mu}{a b} k\right)^{2}$, which shows that d admits a square root in $H_{a, b}$. So we WLOG assume that -abd is not a square.
Now, the projections of $-a b \in K^{\times}$and $-a b d \in K^{\times}$onto the quotient group $K^{\times} /\left(K^{\times}\right)^{2}$ are distinct (since d is not a square) and both unequal to the identity element (since neither $-a b$ nor $-a b d$ is a square). Since the quotient group $K^{\times} /\left(K^{\times}\right)^{2}$ is an \mathbb{F}_{2}-vector space (if we reframe its multiplication as addition), we thus conclude that the projections of $-a b \in K^{\times}$and $-a b d \in K^{\times}$onto this \mathbb{F}_{2}-vector space $K^{\times} /\left(K^{\times}\right)^{2}$ are distinct and both nonzero, and thus \mathbb{F}_{2}-linearly independent (since any two distinct nonzero vectors in an \mathbb{F}_{2}-vector spaces are always \mathbb{F}_{2}-linearly independent). Since the Hilbert symbol is nondegenerate as
an \mathbb{F}_{2}-bilinear form on $K^{\times} /\left(K^{\times}\right)^{2}$, we thus conclude the following: For any $\alpha \in\{1,-1\}$ and $\beta \in\{1,-1\}$, there exists some $\lambda \in K^{\times}$such that $(-a b, \lambda)=\alpha$ and $(-a b d, \lambda)=\beta$. Applying this to $\alpha=(a, b)$ and $\beta=(a b, d)$, we obtain the following: There exists some $\lambda \in K^{\times}$such that $(-a b, \lambda)=(a, b)$ and $(-a b d, \lambda)=$ $(a b, d)$. Consider this λ.

Notice that $(-a b, a b)=1$ (by the same well-known fact that gave us $(-b, b)=$ 1).

Problem 4 on pset \#1 now shows that $a x^{2}+b y^{2}=\lambda$ has a solution (since $(-a b, \lambda)=(a, b))$. Consider these x and y.

Problem 4 on pset \#1 (applied to $a b, d, z$ and w instead of a, b, x and y) shows that $a b z^{2}+d w^{2}=\lambda$ has a solution (since $(-a b d, \lambda)=(a b, d)$). Consider these z and w.

If we had $w=0$, then $a b z^{2}+d w^{2}=\lambda$ would simplify to $a b z^{2}=\lambda$, which would entail that $(-a b, \underbrace{\lambda}_{=a b z^{2}})=\left(-a b, a b z^{2}\right)=(-a b, a b)=1$, which would contradict $(-a b, \lambda)=(a, b)=-1$. Hence, we cannot have $w=0$. Thus, $w \neq 0$.

Now, $a x^{2}+b y^{2}=\lambda=a b z^{2}+d w^{2}$. Solving this for d, we obtain

$$
\begin{aligned}
d & =\frac{a x^{2}+b y^{2}-a b z^{2}}{w^{2}} \quad(\text { since } w \neq 0) \\
& =a\left(\frac{x}{w}\right)^{2}+b\left(\frac{y}{w}\right)^{2}-a b\left(\frac{z}{w}\right)^{2}=\left(\frac{x}{w} i+\frac{y}{w} j+\frac{z}{w} k\right)^{2}
\end{aligned}
$$

which shows that d has a square root in $H_{a, b}$. Part (b) is solved.

MIT OpenCourseWare
https://ocw.mit.edu

18.786 Number Theory II: Class Field Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

