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1. Solution to problem 1

Let π be a uniformizer for OK; thus, p = πOK.
(a) Let M = 2vp (2) + 1. We claim that every element of 1 + pM is a square.
In fact, let N = vp (2) + 1. Then we claim that the squaring map x 7→ x2 takes

1 + pN to 1 + pM, and is an isomorphism between these two groups.
Indeed, for x ∈ pN, we have:

(1 + x)2 = 1 + 2x + x2

and we observe that:

2x ∈ pN+vp(2) = pM

while x2 ∈ p2N ⊂ pM.
To see that the induced map is an isomorphism, we filter both sides, and will

show that the map is an isomorphism on associated graded.
Namely, filter both sides via the subgroups 1 + pN+i and 1 + pM+i (i ≥ 0)

respectively. Clearly these filtrations are complete. Moreover, the above calcu-
lation shows that squaring takes 1 + pN+i to 1 + pM+i for all i ≥ 0, so our map
preserves the filtrations.

To calculate what happens at the associated graded level, take π a uniformizer.
Then for x ∈ OK, the squaring map sends 1 + πN+ix to 1 + 2πN+ix + π2N+2ix2.
Modulo 1 + pM+i+1, the last summand is zero (since 2N ≥ M + 1). To project to
k, which is the ith associated graded term of our filtration on 1 + p, we should
divide by πM+i and then project modulo p: therefore, we obtain 2πN−Mx mod p
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as the result. Note that 2πN−M = 2π−vp(2) is a unit, so the conclusion is that
the map k → k given by the ith associated graded map is multiplication by the
reduction of the unit 2π−vp(2).

Clearly this an isomorphism for every i, so we obtain the claim.
(b) It is clear that (K×)2 is a subgroup of K× (since K× is abelian). It remains

to prove that
[
K× : (K×)2

]
= 4 |k|vp(2).

We first recall that

K× → Z×O×K , a 7→
(

vp (a) ,
a

πvp(a)

)
(1)

is a group isomorphism (with inverse Z×O×K → K×, (n, b) 7→ πnb). Thus,[
K× :

(
K×
)2
]
=
[
Z×O×K :

(
Z×O×K

)2
]

=

Z : Z2︸︷︷︸
this means 2Z


︸ ︷︷ ︸

=2

·
[
O×K :

(
O×K
)2
]
= 2

[
O×K :

(
O×K
)2
]

.

Hence, it remains to prove that
[
O×K :

(
O×K
)2
]
= 2 |k|vp(2).

There are many ways to do this; here is a particularly slick one. We shall use
the following fact:

Proposition 1.1. Let

0 // A //

f
��

B //

g
��

C //

h
��

0

0 // A′ // B′ // C′ // 0

be a commutative diagram of abelian groups. Assume that both of its rows
are exact sequences. Assume also that the groups Ker f , Ker g, Ker h, Coker f
and Coker h are finite. Then, the group Coker g is finite, and satisfies

|Coker f | · |Ker g| · |Coker h| = |Ker f | · |Coker g| · |Ker h| .

Proof of Proposition 1.1. The snake lemma yields an exact sequence

0 −→ Ker f −→ Ker g −→ Ker h −→ Coker f −→ Coker g −→ Coker h −→ 0.

The proposition follows easily from this (details left to the reader).

The next lemma is even easier, and wholly left to the reader:
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Lemma 1.2. Let A and B be two finite abelian groups. Let f : A → B be a

group homomorphism. Then,
|Coker f |
|Ker f | =

|B|
|A| .

Now, let M and N be as in the first part, and let Sq1 denote the map

Sq1 : 1 + pN → 1 + pM,

a 7→ a2,

which we saw is a group isomorphism in the first part.
Also, define a map

Sq2 : O×K → O
×
K ,

a 7→ a2.

Clearly, this Sq2 is a group homomorphism, and the previously defined map
Sq1 : 1 + pN → 1 + pN+vp(2) is a restriction of Sq1. Furthermore, Ker (Sq2) =
{1,−1} and thus |Ker (Sq2)| = 2.

Our two maps Sq1 and Sq2 fit into a commutative diagram

0 // 1 + pN //

∼= Sq1
��

O×K
Sq2
��

//
(
OK/pN)× // 0

0 // 1 + pN+vp(2) // O×K //

(
OK/pN+vp(2)

)×
// 0

,

where the horizontal arrows are given by the canonical inclusions and projec-
tions. The two rows of this diagram are exact sequences, and thus there is

a unique group homomorphism Sq3 :
(
OK/pN)× → (

OK/pN+vp(2)
)×

which
makes the diagram

0 // 1 + pN //

∼= Sq1
��

O×K
Sq2
��

//
(
OK/pN)×

Sq3
��

// 0

0 // 1 + pN+vp(2) // O×K //

(
OK/pN+vp(2)

)×
// 0

(2)
commute. Call this map Sq3.

Since Sq1 is an isomorphism, we have Ker (Sq1) = 1 and Coker (Sq1) = 1
(where we use 1 to denote the trivial group). As we already know, |Ker (Sq2)| =
2. In particular, Ker (Sq1), Coker (Sq1) and Ker (Sq2) are finite groups.

Also, Ker
(
Sq3
)

and Coker
(
Sq3
)

are finite groups (since Sq3 is a morphism
between finite groups). Therefore, Proposition 1.1 (applied to the diagram (2))
shows that

|Coker (Sq1)| · |Ker (Sq2)| ·
∣∣Coker

(
Sq3
)∣∣ = |Ker (Sq1)| · |Coker (Sq2)| ·

∣∣Ker
(
Sq3
)∣∣ .
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Plugging in the orders we have already calculated, we obtain:

2 ·
∣∣Coker

(
Sq3
)∣∣ = |Coker (Sq2)| ·

∣∣Ker
(
Sq3
)∣∣ .

We are trying to solve for |Coker (Sq2)|, so it remains to calculate |Coker(Sq3)|
|Ker(Sq3)|

.

By Lemma 1.2, this is

∣∣∣(OK/pM)
×∣∣∣

|(OK/pN)
×| . Filtering the unit group in the usual way (or

explicitly calculating the orders), we find this quotient to be |k|M−N = |k|vp(2).
Plugging this in for our earlier calculation, we obtain:

2 · |k|vp(2) = |Coker (Sq2)| (3)

as desired.
(c) First, we shall characterize

(
Z×2
)2.

Set p = 2 and K = Q2; thus, OK = Z2, p = 2Z2, k = F2 and vp = v2. Thus, (3)
rewrites as follows: 2 |F2|v2(2) = |Coker (Sq2)| =

[
Z×2 :

(
Z×2
)2
]
. Hence,[

Z×2 :
(
Z×2
)2
]
= 2 |F2|v2(2)︸ ︷︷ ︸

=21=2

= 4.

It is easy to see that
(
Z×2
)2 ⊆ 1 + 8Z2 (in fact, the canonical projection Z2 →

Z2/8Z2
∼= Z/8Z sends

(
Z×2
)2 to

(
(Z/8Z)×

)2
, which is the trivial subgroup

of (Z/8Z)×). But the canonical projection Z2 → Z2/8Z2
∼= Z/8Z restricts to

a surjection Z×2 → (Z/8Z)×, whose kernel is 1 + 8Z2. Hence, the index of the

subgroup 1 + 8Z2 in Z×2 must equal the size
∣∣∣(Z/8Z)×

∣∣∣ of the image of this

surjection. In other words,
[
Z×2 : (1 + 8Z2)

]
=
∣∣∣(Z/8Z)×

∣∣∣ = 4. Comparing this

with
[
Z×2 :

(
Z×2
)2
]
= 4, we conclude that the two subgroups

(
Z×2
)2 and 1+ 8Z2

of Z×2 have the same (finite) index in Z×2 . Since one of these two subgroups is
contained in the other (because

(
Z×2
)2 ⊆ 1 + 8Z2), this yields that these two

subgroups are identical. In other words,
(
Z×2
)2

= 1 + 8Z2.
But in our setting, the group isomorphism (1) takes the form

Q×2 → Z×Z×2 , a 7→
(

v2 (a) ,
a

2v2(a)

)
(where we choose 2 as our uniformizer π). Thus, this isomorphism takes the
subgroup

(
Q×2
)2 of Q×2 to the subgroup

(
Z×Z×2

)2
= 2Z ×

(
Z×2
)2︸ ︷︷ ︸

=1+8Z2

= 2Z ×

(1 + 8Z2) of Z×Z×2 . This means that an element x of Q×2 is a square (in Q×2 )

if and only if v2 (x) belongs to the subgroup 2Z of Z, and
x

2v2(x)
belongs to the

subgroup 1 + 8Z2 of Z×2 . This is exactly what the problem asked us to prove.
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2. Solution to problem 3

If V is a subgroup of an abelian group U, and if p ∈ U, then we shall use the
notation [p]V for the projection of p on U/V.

(a) Let x ∈ A and n ≥ 0. We need to show that the map

Fn A/Fn+1A→ FnB/Fn+1B, [y]Fn+1 A 7→ [ f (x + y)− f (x)]Fn+1B

is well-defined. In other words, we need to show two statements:
Statement 1: If y ∈ Fn A, then f (x + y)− f (x) ∈ FnB.
Statement 2: If y and y′ are two elements of Fn A satisfying y ≡ y′mod Fn+1A,

then f (x + y)− f (x) ≡ f (x + y′)− f (x)mod Fn+1B.
Proof of Statement 1: Let y ∈ Fn A. Then, x + y ∈ x + Fn A. But f preserves the

filtration; thus, f maps x + Fn A to f (x) + FnB. In other words, f (x + Fn A) ⊆

f (x) + FnB. Hence, f

 x + y︸ ︷︷ ︸
∈x+Fn A

 ∈ f (x + Fn A) ⊆ f (x) + FnB. In other words,

f (x + y)− f (x) ∈ FnB. This proves Statement 1.
Proof of Statement 2: Let y and y′ be two elements of Fn A satisfying y ≡

y′mod Fn+1A. Thus, y ∈ y′ + Fn+1A, so that x + y ∈ x + y′ + Fn+1A. But f pre-
serves the filtration; thus, f maps x + y′ + Fn+1A to f (x + y′) + Fn+1B. In other

words, f (x + y′ + Fn+1A) ⊆ f (x + y′) + Fn+1B. Hence, f

 x + y︸ ︷︷ ︸
∈x+y′+Fn+1 A

 ∈
f (x + y′ + Fn+1A) ⊆ f (x + y′)+ Fn+1B. In other words, f (x + y) ≡ f (x + y′)mod Fn+1B.
Hence, f (x + y)− f (x) ≡ f (x + y′)− f (x)mod Fn+1B. This proves Statement
2.

Thus, part (a) of the problem is solved.
(b) Let b ∈ B. We will find some a ∈ A satisfying f (a) = b.
We shall construct a sequence (a0, a1, a2, . . .) ∈ A∞ of elements of A such that

every n ≥ 1 satisfies
an ≡ an−1 mod Fn−1A (4)

and every n ≥ 0 satisfies
f (an) ≡ b mod FnB. (5)

We shall construct this sequence (a0, a1, a2, . . .) recursively: We start by setting
a0 = 0; thus, (5) is clearly satisfied for n = 0. Now, let k be a nonnegative
integer, and assume that we have defined ak ∈ A such that (5) is satisfied for
n = k. We shall then define an ak+1 ∈ A such that both (4) and (5) are satisfied
for n = k + 1.

Indeed, we have f (ak) ≡ b mod FkB (since (5) is satisfied for n = k). Thus,
b− f (ak) ∈ FkB. Hence, [b− f (ak)]Fk+1B ∈ FkB/Fk+1B is well-defined.

But by assumption, the symbol map

Fk A/Fk+1A→ FkB/Fk+1B, [y]Fk+1 A 7→ [ f (x + y)− f (x)]Fk+1B
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is surjective for every x ∈ A. Applying this to x = ak, we see that the symbol
map

Fk A/Fk+1A→ FkB/Fk+1B, [y]Fk+1 A 7→ [ f (ak + y)− f (ak)]Fk+1B

is surjective. Thus, there exists some y ∈ Fk A such that

[ f (ak + y)− f (ak)]Fk+1B = [b− f (ak)]Fk+1B . (6)

Consider this y. From (6), we obtain f (ak + y)− f (ak) ≡ b− f (ak)mod Fk+1B,
so that f (ak + y) ≡ b mod Fk+1B.

Now, set ak+1 = ak + y. Thus, ak+1 = ak + y︸︷︷︸
∈Fk A

∈ ak + Fk A, so that ak+1 ≡

ak mod Fk A. In other words, (4) holds for n = k + 1. Moreover, f

 ak+1︸︷︷︸
=ak+y

 =

f (ak + y) ≡ b mod Fk+1B. In other words, (5) holds for n = k + 1. Thus, we have
defined an ak+1 ∈ A such that both (4) and (5) are satisfied for n = k + 1. This
completes our recursive construction of the sequence (a0, a1, a2, . . .).

Now, the sequence (a0, a1, a2, . . .) ∈ A∞ is Cauchy (because of (4)). Hence, it
has a limit a ∈ A. Consider this a. We claim that f (a) = b.

Indeed, let n ≥ 0 be an integer. Then, an ≡ a mod Fn A (because (4) shows
that the sequence (a0, a1, a2, . . .) stabilizes modulo Fn A at its term an). In other
words, a ∈ an + Fn A. But from (5), we obtain f (an) ≡ b mod FnB.

The map f preserves the filtration, and thus maps an + Fn A to f (an) + FnB. In

other words, f (an + Fn A) ⊆ f (an)+ FnB. Hence, f

 a︸︷︷︸
∈an+Fn A

 ∈ f (an + Fn A) ⊆

f (an) + FnB. Thus, f (a) ≡ f (an) ≡ b mod FnB, so that f (a)− b ∈ FnB.
Now, forget that we fixed n. We thus have shown that f (a) − b ∈ FnB for

every n ≥ 0. Hence, f (a) − b ∈ ⋂
n≥0 (FnB) = 0 (since the topology on B is

complete and thus Hausdorff). In other words, f (a) = b.
Now, let us forget that we fixed b. Thus, for every b ∈ B, we have constructed

an a ∈ A such that f (a) = b. Hence, the map f is surjective. Part (b) of the
problem is solved.

(c) We shall prove two versions of Hensel’s lemma:

Theorem 2.1. Let f (t) ∈ OK [t] be a polynomial with f (p) ⊆ p and f ′ (p) ⊆
O×K . Then, f has a zero in p.

Theorem 2.2. Let f (t) ∈ OK [t] be a polynomial. Let proj be the canonical
projection OK → k. Let f (t) ∈ k [t] be the image of f (t) under the projection
proj [t] : OK [t] → k [t]. Let x be a root of f (t) in k such that f

′
(x) 6= 0. Then,

there exists a root x of f in OK such that x = proj x.
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(Both of these theorems can be amended to include uniqueness statements,
but we shall not need these.)

Proof of Theorem 2.1. Let A = p and B = p, equipped with filtrations given by
Fn A = pn+1 and FnB = pn+1. Clearly, both of these filtered groups A and B
are complete. The polynomial f gives rise to a map p → p, a 7→ f (a) (since
f (p) ⊆ p), which we shall also denote by f (by abuse of notation). This map
f preserves the filtration (in the sense of this exercise)1. Thus, part (a) of this
exercise shows that the symbol map

pn+1/pn+2 → pn+1/pn+2, [y]pn+2 7→ [ f (x + y)− f (x)]pn+2

is well-defined for every n ≥ 0 and every x ∈ p. Moreover, this symbol map
is surjective2. Hence, part (b) of this exercise shows that the map f : p → p is
surjective. Hence, there exists some a ∈ p such that f (a) = 0. In other words, f
has a zero in p. This proves Theorem 2.1.

1This is a particular case of the following general fact: If R is a commutative ring, if g ∈ R [t] is
any polynomial, if x ∈ R, and if I is any ideal of R, then g maps x + I to g (x) + I. (This, in
turn follows from the fact that x− y | g (x)− g (y) for any g ∈ R [t] and any x, y ∈ R.)

2Proof. Fix n ≥ 0 and x ∈ p. Let b ∈ pn+1/pn+2. We need to show that there exists some
y ∈ pn+1 such that [ f (x + y)− f (x)]pn+2 = b.

Write b as [c]pn+2 for some c ∈ pn+1. Fix a uniformizer π of p. Notice that
(
πn+1)2

=

π2(n+1) ∈ p2(n+1) ⊆ pn+2 (since 2 (n + 1) ≥ n + 2). Also,
c

πn+1 ∈ OK (since c ∈ pn+1).

Fix λ ∈ OK. It is well-known that f (t + s) ≡ f (t) + s f ′ (t)mod s2 in the polyno-
mial ring OK [t, s] (this is the algebraic version of the difference-limit definition f ′ (t) =

lim
s→0

f (t + s)− f (t)
s

of the derivative). Evaluating this congruence at t = x and s = λπn+1,

we obtain
f
(

x + λπn+1
)
≡ f (x) + λπn+1 f ′ (x)mod

(
πn+1

)2
.

Thus,
f
(

x + λπn+1
)
≡ f (x) + λπn+1 f ′ (x)mod pn+2 (7)

(because
(
πn+1)2 ∈ pn+2).

Let us now forget that we fixed λ. We thus have proven (7) for every λ ∈ OK. Now,
recall that x ∈ p and thus f ′ (x) ∈ f ′ (p) ⊆ O×K . Hence, there exists a λ ∈ OK such that

λπn+1 f ′ (x) = c (namely, λ =
c

πn+1 / f ′ (x); this is allowed because
c

πn+1 ∈ OK). Consider

this λ. From (7), we obtain

f
(

x + λπn+1
)
≡ f (x) + λπn+1 f ′ (x)︸ ︷︷ ︸

=c

= f (x) + c mod pn+2,

so that f
(

x + λπn+1)− f (x) ≡ c mod pn+2 and thus
[

f
(
x + λπn+1)− f (x)

]
pn+2 = [c]pn+2 =

b.
Moreover, λ︸︷︷︸

∈OK

πn+1︸ ︷︷ ︸
∈pn+1

∈ pn+1. Hence, there exists some y ∈ pn+1 such that

[ f (x + y)− f (x)]pn+2 = b (namely, y = λπn+1). This completes our proof.

7
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Proof of Theorem 2.2. There clearly exists some z ∈ OK such that x = proj z. Fix
such a z.

Define a polynomial g ∈ OK [t] by g (t) = f (t− z). Then, show that g (p) ⊆ p
and argue the rest by applying Theorem 2.1 to g instead of f . (Or read the proof
in [Murfet05, Corollary 2].)

Showing that −1 is a square in Q5 can easily be done using Theorem 2.2
(applied to K = Q5, OK = Z5, p = 5, f (t) = t2 + 1 and x = [2]5OK

).

3. Solution sketch to problem 2

(a) Let a, b ∈ K×. Then,

vp

(
avp(b)

bvp(a)

)
= vp

(
avp(b)

)
︸ ︷︷ ︸
=vp(b)vp(a)

− vp
(

bvp(a)
)

︸ ︷︷ ︸
=vp(a)vp(b)

= vp (b) vp (a)− vp (a) vp (b) = 0,

so that
avp(b)

bvp(a)
∈ O×K .

(b) The field k is a finite field, and thus its multiplicative group k× is cyclic.
Hence, the unique non-trivial character k× → {1,−1} is the map which sends
every square in k× to 1 and every non-square to −1. Let us denote this character
by L. Thus, L (a) (for some a ∈ k×) is the analogue of the Legendre symbol(

a
p

)
for finite fields.

The rest of the solution is a (mostly literal) translation of [Raskin15, Proposi-
tion 3.16.2] with the following changes (no guarantee of completeness):

• Replace
(

a
p

)
by L (a).

• Replace Fp by k.

• Replace (a, b)p by (a, b).

• Replace each remaining p by p, π (the uniformizer of p) or |k| (depending
on the context).

• Replace Hensel’s lemma by Theorem 2.2.

• Replace Corollary 3.10.4 by the fact that x ∈ O×K is a square if and only
if x mod p is a square in k×. (This is proven using Theorem 2.2, just as
Corollary 3.10.4 is proven using Hensel’s lemma.)

(c) See [Raskin15, Proposition 3.16.3].
(d) See [Raskin15, Proposition 3.16.3].
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4. Solution sketch to problem 4

Follow the proof of [Raskin15, Proposition 3.15.1] with the obvious generaliza-
tions.

5. Solution sketch to problem 5

(a) I give two proofs in [Grinbe15].
(b) See [Conrad15, Theorem 4.21] (and, more directly, [Conrad15, Theorem

4.25], but that one is left as an exercise).
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