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4 Etale´ algebras, norm and trace

4.1 Separability

In this section we briefly review some standard facts about separable and inseparable field
extensions that we will use repeatedly throughout the course. Those familiar with this
material should feel free to skim it. In this section K denotes any field.

Definition 4.1. A nonzero polynomial f over a field K is separable if the zeros of f are
distinct in every extension of K; equivalently, gcd(f, f ′) is a unit in K[x] (i.e. of degree 0).1

Otherwise f is inseparable.

Warning 4.2. Older texts (such as Bourbaki) define a polynomial in K[x] to be separable
if all of its irreducible factors are separable (under our definition); so (x− 1)2 is separable
under this definition but not under ours. This approach has the disadvantage that it is not
preserved under field extension (for example, a polynomial that is inseparable as an element
of K[x] becomes separable when viewed as an element of K[x], since it splits into linear
factors in K[x] and every nonzero linear polynomial is separable). This discrepancy does
not change the definition of separable elements or field extensions.

Definition 4.3. Let L/K be an algebraic field extension. An element α ∈ L is separable
over K if it is the root of a separable polynomial in K[x] (in which case its minimal
polynomial is necessarily separable). The extension L/K is separable if every α ∈ L is
separable over K; otherwise it is inseparable.

Lemma 4.4. An irreducible polynomial f ∈ K[x] is inseparable if and only if f ′ = 0.

Proof. Let f ∈ K[x] be irreducible; then f is nonzero and not a unit, so deg f > 0. If f ′ = 0
then gcd(f, f ′) = f 6∈ K× and f is inseparable. If f is inseparable then g := gcd(f, f ′) is a
nontrivial divisor of f and f ′. This implies deg g = deg f , since f is irreducible, but then
deg f ′ < deg f = deg g, so g cannot divide f ′ unless f ′ = 0.

Corollary 4.5. Let f K[x] be irreducible and let p 0 be the characteristic of K. We
n

∈ ≥
have f(x) = g(xp ) for some irreducible separable g ∈ K[x] and integer n ≥ 0 uniquely
determined by f .

Proof. If f is separable the theorem holds with g = f and n = 0; for uniqueness, note that
n 6 n

if p = 0 then p = 0 if and only if n = 0, and if p > 0 and g(xp ) is inseparable unless n = 0
n n n

because g(xp )′ = g′(xp )pn∑xp −1 = 0 (by the previous lemma). Otherwise f(x) := frx
r

is inseparable and f ′(x) = rf r
rx
−1 = 0 (by the lemma), and this can occur only if p > 0

and fr = 0 for all r ≥ 0 not divisible by p. So f = g(xp) for some (necessarily irreducible)

∑
g ∈ K[x]. If g is separable we are done; otherwise we proceed by induction. As above, the

n
uniqueness of g and n is guaranteed by the fact that g(xp )′ = 0 for all n > 0.

Corollary 4.6. If char K = 0 then every algebraic extension of K is separable.

Lemma 4.7. Let L = K(α) be an algebraic field extension contained in an algebraic closure
K of K and let f ∈ K[x] be the minimal polynomial of α over K. Then

# HomK(L,K) = #{β ∈ K : f(β) = 0} ≤ [L : K],

with equality if and only if α is separable over K.
1Here f ′ is the formal derivative of f in K[x]: if f =

∑
f n n 1
nx then f ′ = nfnx

− .
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Proof. Each element of HomK(L,K) is u
number o

niquely determined by the image of α, which must
be a root β of f(x) in K. The f these roots is equal to [L : K] = deg f precisely
when f , and therefore α, is separable over K.

Definition 4.8. Let L/K be a finite extension of fields. The separable degree of L/K is

[L : K]s := # HomK(L,K).

The inseparable degree of f is

[L : K]i := [L : K]/[L : K]s

We will see shortly that [L : K]s always divides [L : K], so [L : K]i is an integer (in fact a
power of charK), but it follows immediately from our definition that

[L : K] = [L : K]s[L : K]i.

always holds.

Theorem 4.9. Let L/K be an algebraic field extension. and let φK : K → Ω be a homomor-
phism to an algebraically closed field Ω. Then φK extends to a homomorphism φL : L→ Ω.

Proof. We use Zorn’s lemma. Define a partial ordering on the set F of pairs (F, φF ) for
which F/K is a subextension of L/K and φF : F → Ω extends φK by defining

(F1, φF1) ≤ (F2, φF2)

whenever F2 con⋃tains F1 and φF2 extends φF1 . Given any totally ordered subset C of F , let
E be the field {F : (F, φF ) ∈ C} and define φE : E → Ω by φE(x) = φF (x) for x ∈ F ⊆ E
(this does not depend on the choice of F because C is totally ordered). Then (E, φE) is a
maximal element of C, and by Zorn’s lemma, F contains a maximal element (M,φM ).

We claim that M = L. If not, then pick α ∈ L−M and consider the field F = M [α] ⊆ L
properly containingM , and extend φM to ϕF : F → Ω be letting φF (α) be any root of αM (f)
in Ω, where f ∈M [x] is the minimal polynomial of α over M and αM (f) is the image of f
in Ω[x] obtained by applying ϕM to each coefficient. Then (M,φM ) is strictly dominated
by (F, φF ), contradicting its maximality.

Lemma 4.10. Let L/F/K be a tower of finite extensions of fields. Then

# HomK(L,K) = # HomK(F,K)# HomF (L,K).

Proof. We decompose L/F/K into a tower of simple extensions and proceed by induction.
The result is trival if L = K and otherwise it suffices to consider K ⊆ F ⊆ F (α) = L,
where K = F in the base case. Theorem 4.9 allows us to define a bijection

HomK(F,K)×HomF (F (α),K)→ HomK(F (α),K)

that sends (φ1, φ2) to φ : L → K defined by φ|F = φ1 and φ(α) = (φ̂1φ̂2φ̂
−1
1 )(α), where

φ̂1, φ̂2 ∈ AutK(K) are arbitrary extensions of φ1, φ2 to K; note that φ(α) does not depend
on these choices and is a root of φ(f), where f ∈ F [x] is the minimal polynomial of α and

ˆ ˆˆφ(f) is its image in φ(F )[x]. The inverse bijection is φ1 = φ|F and φ α) = (φ−1
2( 1 φφ1)(α).
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Corollary 4.11. Let L/F/K be a tower of finite extensions of fields. Then

[L : K]s = [L : F ]s[F : K]s

[L : K]i = [L : F ]i[F : K]i

Proof. The first equality follows from the lemma and the second follows from the identities
[L : K] = [L : F ][F : K] and [L : K] = [L : K]s[L : K]i.

Theorem 4.12. Let L/K be a finite extension of fields. The following are equivalent:

(a) L/K is separable;

(b) [L : K]s = [L : K];

(c) L = K(α) for some α ∈ L separable over K;

(d) L ' K[x]/(f) for some monic irreducible separable polynomial f ∈ K[x].

Proof. The equivalence of (c) and (d) is immediate (let f be the minimal polynomial of α
and let α be the image of x in K[x]/(f)), and the equivalence of (b) and (c) is given by
Lemma 4.7. That (a) implies (c) is the Primitive Element Theorem, see [1, §15.8] or
[3, §V.7.4] for a proof. It remains only to show that (c) implies (a).

So let L = K(α) with α separable over K. For any β ∈ L we can write L = K(β)(α),
and we note that α is separable over K(β), since its minimal polynomial over K(β) divides
it minimal polynomial over K, which is separable. Lemma 4.7 implies [L : K]s = [L : K]
and [L : K(β)]s = [L : K(β)] (since L = K(α) = K(β)(α)), and the equalities

[L : K] = [L : K(β)][K(β) : K]

[L : K]s = [L : K(β)]s[K(β) : K]s

then imply [K(β) : K]s = [K(β) : K]. So β is separable over K (by Lemma 4.7). This
applies to every β ∈ L, so L/K is separable and (a) holds.

Corollary 4.13. Let L/K be a finite extension of fields. Then [L : K]s ≤ [L : K] with
equality if and only if L/K is separable.

Proof. We have already established this for simple extensions, and otherwise we my decom-
pose L/K into a finite tower of simple extensions and proceed by induction on the number
of extensions, using the previous two corollaries at each step.

Corollary 4.14. Let L/F/K is a tower of finite extensions of fields. Then L/K is separable
if and only if both L/F and F/K separable.

Proof. The forward implication is immediate and the reverse implication follows from Corol-
laries 4.11 and 4.13.

Corollary 4.15. Let L/F/K be a tower of algebraic field extensions. Then L/K is separable
if and only if both L/F and F/K are separable.

Proof. As in the previous corollary the forward implication is immediate. To prove the
reverse implication, we assume L/F and F/K are separable and show that every β ∈ L is
separable over K. If β ∈ F we are done, and if not we at least know that β is separable
over F . Let M/K be the subextension of F/K generated by the coefficients of the minimal
polynomial f ∈ F [x] of β over F . This is a finite separable extension of K, and M(β) is also
a finite separable extension of M , since the minimal polynomial of β over M(β) is f , which
is separable. By the previous corollary, M(β), and therefore β, is separable over K.
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Corollary 4.16. Let L/K be an algebraic field extension, and let

F = {α ∈ L : α is separable over K}.

Then F is a separable field extension of K.

Proof. This is clearly a field, since if α and β are both separable over K then K(α) and
K(α, β) are separable extensions of K (by the previous corollary), thus every element of
K(α, β), including αβ and α + β, is separable over K and lies in F . The field F is then
separable by construction.

Definition 4.17. Let L/K be an algebraic field extension. The field F in Corollary 4.16
is the separable closure of K in L. When L is an algebraic closure of K it is simply called
a separable closure of K and denoted Ksep.

When K has characteristic zero the notions of separable closure and algebraic closure
necessarily coincide. This holds more generally whenever K is a perfect field.

Definition 4.18. A field K is perfect if every algebraic extension of K is separable.

All fields of characteristic zero are perfect, as are all finite fields.

Theorem 4.19. Every finite field is a perfect field.

Proof. It suffices to consider a finite field of prime order Fp, since every finite field is an
algebraic extension of its prime field, and any algebraic extension of a perfect field is perfect.
Let f ∈ F n

p[x] be irreducible, and use Corollary 4.5 to write f(x) = g(xp ) with g ∈ Fp[x]
irreducible and separable, and n ≥ 0. If n > 0 then

f(x) = g(xp
n n−1
) = g(xp )p,

since h(xp) = h(x)p for any h ∈ Fp[x], but this contradicts the irreducibility of f . So n = 0
and f = g is separable.

Definition 4.20. A field K is separably closed if K has no nontrivial finite separable
extensions. Equivalently, K is equal to its separable closure in any algebraic closure of K.

Definition 4.21. An algebraic extension L/K is purely inseparable if [L : K]s = 1.

Remark 4.22. The trivial extension K/K is both separable and purely inseparable (but
this can happen only for trivial extensions).

Example 4.23. If K = Fp(t) and L = K[x]/(xp − t) = Fp(t1/p), then L/K is a purely
inseparable extension of degree p.

Proposition 4.24. Let K be a field of characteristic p > 0. If L/K is purely inseparable
of degree p then L = K(a1/p) ' K[x]/(xp − a) for some a ∈ K −Kp.

Proof. Every α ∈ L−K is inseparable over K, and by Corollary 4.5 its minimal polynomial
over K is of the form f(x) = g(xp) with f monic. We have 1 < deg f ≤ [L : K] = p, so
g(x) must be a monic polynomial of degree 1, which we can write as g(x) = x − a. Then
f(x) = xp − a, and we must have a 6∈ Kp since f is irreducible (a difference of pth powers
can be factored). We have [L : K(α)] = 1, so L = K(α) ' K[x]/(xp − a) as claimed.
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Theorem 4.25. Let L/K be an algebraic extension and let F be the separable closure of
K in L. Then L/F is purely inseparable.

Proof. If L is separable then L = F the theorem holds, so we assume otherwise, in which
case the characteristic p of K must be nonzero. Fix an algebraic closure K of K that
contains L. Let α ∈ L− F have minimal polynomial f over F . Use Corollary 4.5 to write
f(x) = g(xp

n
) with g ∈ F [x] irreducible and separable, and n ≥ 0. We must have deg g = 1,

since otherwise the roots of g would be separable over F and therefore over K but not lie
n

in in the separable closure F of K in L. Thus f(x) = xp − c for some c ∈ F (since f is
monic and deg g = 1). Since we are in characteristic p > 0, we can factor f in F (α)[x] as

pn − pn n
f(x) = x α = (x− α)p .

There is thus only one F -homomorphism from F (α) to K. The same statement applies to
any extension of F obtained by adjoining any set of elements of L (even an infinite set).
Therefore # HomF (L,K) = 1, so [L : F ]s = 1 and L/F is purely inseparable.

Corollary 4.26. Every algebraic extension L/K can be uniquely decomposed into a tower
of algebraic extensions L/F/K with F/K separable and L/F purely inseparable.

Proof. By Theorem 4.25, we can take F to be the separable closure Ks of K in L. This is the
only possible choice because every separable extensions F/K lies in Ks and if [Ks : F ] 6= 1
then [L : F ]s ≥ [Ks : F ]s = [Ks : F ] > 1 and then L/F is not not purely inseparable.

Corollary 4.27. The inseparable degree of any finite extension is a power of the charac-
teristic.

Proof. This follows from the proof of Theorem 4.25.

4.2 Etale´ algebras

We now want to generalize the notion of a separable field extension to that of a separable
algebra (over a field), also known as an étale algebra.

Definition 4.28. Let K be a field. An étale K-algebra is a (necessarily commutative)
K-algebra that is isomorphic to a finite product of separable extensions of K. A finite
étale K-algebra is a K-algebra that is isomorphic to a finite product of finite separable
extensions of K. The dimension of an étale K-algebra is its dimension as a K-vector space.
A homomorphism of étale K-algebras is simply a homomorphism of K-algebras.

Remark 4.29. One can define the notion of an étale A-algebra for any noetherian do-
main A; we will postpone this definition to a later lecture.

Every separable field extension L/K is an étale K-algebra, and if an étale K-algebra L
is a field, then it is necessarily isomorphic to a separable extension of K. In general an étale
K-algebra L need not be a field, but every α ∈ L is separable (note that when L is not a
field the minimal polynomial of α need not be irreducible, but it will be separable).

Example 4.30. If K is a separably closed field then every finite étale K-algebra A is
isomorphic to Kn = K × · · · ×K for some positive integer n.
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Étale algebras are a special case of semisimple algebras. Recall that a (not necessarily
commutative) ring R is simple if it is nonzero and has no nonzero proper (two-sided) ideals,
and semisimple if it is isomorphic to a nonempty finite product of simple rings Ri. When
R is a commutative ring, it is simple if and only if it is a field, and semisimple if and only if
it is a finite product of fields. A semisimple algebra over a field is a finite product

∏
of simple

algebras over the same field. If A =
∏
Ai is a finite product of simple algebras, then every

nonzero ideal of A is a subproduct.

Proposition 4.31. Let A =
∏
Ki be a K-algebra written that is a product of field exten-

sions Ki/K. Every surjective homomorphism ϕ : A → B of K-algebras corresponds to the
projection of A on to a subproduct of its factors.

Proof. The ideal kerϕ is a subproduct of
∏
Ki, thus A ' kerϕ × imϕ and B = imϕ is

isomorphic to the complementary subproduct.

Proposition 4.31 can be viewed as a generalization of the fact that every surjective
homomorphism of fields is an isomorphism.

Corollary 4.32. The decomposition of an étale algebra into field extensions is unique up
to permutation and isomorphisms of factors.

Proof. Let A be an étale K-algebra and suppose A is isomorphic (as a K-algebra) to two
products of field extensions of K, say

∏m n

Ki

i=1

' A '
j

∏
Lj .

=1

Composing∏ with isomorphisms yields surjective K-algebra homomorphisms πi : Lj → Ki

and πj : Ki → Lj . Proposition 4.31 then implies that each Ki must be isomorphic to one
of the Lj and each Lj must be isomorphic to one of the Ki (and m = n).

∏

Our main interest in étale algebras is that they naturally arise from (and are stable
under) base change, a notion we now recall.

Definition 4.33. Let ϕ : A → B be a homomorphism of rings (so B is an A-module),
and let M be any A-module. The tensor product of A-modules M ⊗A B is a B-module
(with multiplication defined by b(m⊗ b′) := m⊗ bb′) called the base change (or extension of
scalars) of M from A to B. If M is an A-algebra then its base change to B is a B-algebra.

We have already seen one example of base change: if M is an A-module and p is a
prime ideal of A then Mp = M ⊗AAp (as noted in Lecture 2, this another way to define the
localization of a module).

Remark 4.34. Each ϕ : A → B determines a functor from the category of A-modules to
the category of B-modules via base change. It has an adjoint functor called restriction of
scalars that converts a B-module M into an A-module by the rule am = ϕ(a)m (if ϕ is
inclusion this amounts to restricting the scalar multiplication by B to the subring A).

The ring homomorphism ϕ : A→ B will often be an inclusion, in which case we have a
ring extension B/A (we may also take this view whenever ϕ is injective, which is necessarily
the case if A is a field). We are specifically interested in the case where B/A is a field
extension and M is a finite étale A-algebra.
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Proposition 4.35. Suppose L is a finite étale K-algebra and K ′/K is any field extension.
Then L⊗K K ′ is a finite étale K ′-algebra of the same dimension as L.

Proof. Without loss of generality we assume that L is actually a field; if not L is a product
of fields and we can apply the following argument to each of its factors.

By Theorem 4.12, L ' K[x]/(f) for some irreducible separable polynomial f ∈ K[x].
Suppose f = f1f2 · · · fm is the irreducible factorization of f in K ′[x]. The fi are separable
and that no pair share a common factor (the ideals (f1), . . . , (fm) are pairwise coprime),
since f is separable. We have an isomorphism of K∏′-algebras L ⊗K K ′ ' K ′[x]/(f), and
by the Chinese remainder theorem, K ′[x]/(f) ' iK

′[x]/(fi). Each field K ′[x]/(fi) is
a finite separable extension of K ′, thus L ⊗K K ′ is a finite étale K ′-algebra. We have
dimK L = deg f = dimK′ K

′[x]/(f), so the dimension is preserved.

Example 4.36. Any finite dimensional real vector space V is a finite étale R-algebra (with
coordinate-wise multiplication with respect to some basis); the complex vector space V ⊗RC
is then a finite étale C-algebra of the same dimension.

Note that even when an étale K-algebra L is a field, the base change L⊗KK ′ will often
not be a field. For example, if K = Q and L 6= Q is a number field, then L⊗K C will never
be a field, it will be isomorphic to a C-vector space of dimension [L : K] > 1.

Remark 4.37. In the proof of Proposition 4.35 we made essential use of the fact that the
elements of an étale K-algebra are separable. Indeed, the proposition is false if we replace L
with a commutative semisimple algebra that contains an inseparable element, as we now
show. Without loss of generality, we can assume L is a purely inseparable extension of K
(focus on one factor of L and base change to replace K by its maximal separable extension

n
in L if necessary). Let α be an inseparable element of L. By Corollary 4.5, f(x) = g(xp )
for some irreducible separable g ∈ K[x], where p is the characteristic of K, and g must have
degree 1 since L/K is purely inseparable. Thus f(x) = xp

n − c for some c ∈ K×. Now
consider the element

γ := α⊗ 1− 1⊗ α ∈ L⊗K L

We have γ 6= n
0, since γ ∈/ K, but γp = αp

n ⊗ 1 − 1 ⊗ n
αp = c ⊗ 1 − 1 ⊗ c = 0 (since

c ∈ K), so γ is a nonzero and nilpotent. This implies L ⊗K L is not a product of fields
(separable or otherwise), hence not semisimple. This shows the category of commutative
semisimple algebras is not stable under base change. In fact, one can define étale algebras
as commutative semisimple algebras that remain semisimple after base change.

Corollary 4.38. Let L ' K[x]/(f) be a finite separable extension of a field K defined by
an irreducible separable polynomial f ∈ K[x]. Let K ′/K be any field extension, and let
f = f1 · · · fm be the factorization of f into distinct irreducible polynomials fi ∈ K ′[x]. We
have an isomorphism of finite étale K ′-algebras

L⊗K K ′ '
∏

K ′[x]/(fi)
i

where each K ′[x]/(fi) is a finite separable field extension of K ′.

Proof. This follows directly from the proof of Proposition 4.35.
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Proposition 4.39. Suppose L is a finite étale K-algebra and Ω is a separably closed field
extension of K. There is an isomorphism of finite étale Ω-algebras

L⊗K Ω −∼→ Ω

σ∈Hom

∏
K(L,Ω)

that sends β ⊗ 1 to the vector (σ(β))σ for each β ∈ L.

Proof. We may reduce to the case that L = K[x]/(f) is a separable field extension, and
we may then factor f(x) = (x− α1) · · · (x− αn) over Ω, with the αi are distinct. We have
a bijection between HomK(K[x]/(f),Ω) and the set {αi}: each σ ∈ HomK(K[x]/(f),Ω)
is determined by σ(x) ∈ {αi}, and for each αi, the map x 7→ αi determines a K-algebra
homomorphism σi ∈ HomK(K[x]/(f),Ω). As in the proof of Proposition 4.35 we have
Ω-algebra isomorphisms

K[x] Ω[
K

(f)
⊗ Ω→∼ x] Ω[→∼

(f)

∏ x]

αi

i
(

→∼ Ω
x− αi)

∏
.

σi

which map
x⊗ 1 7→ x 7→ (αi)i 7→ (σi(x))i.

The element x ⊗ 1 generates L ⊗K Ω as an Ω-algebra, and has image (σi(x))i in σ . It
i

follows that β ⊗ 1 7→ (σi(β))i for every β ∈ L.

∏
Remark 4.40. The proof of Proposition 4.39 does not actually require Ω to be separably
closed, we only needed f(x) to split into linear factors in Ω[x]. Thus the proposition
holds whenever all the irreducible polynomials f ∈ K[x] for which the field K[x]/(f) is a
isomorphic to one of the finite separable field extensions of K that is a factor of L split
completely in Ω[x] (for example, when L is a field, one could take Ω to be its normal closure).

Example 4.41. Let L/K = Q(i)/Q and Ω = C. We have Q(i) ' Q[x]/(x2 + 1) and

Q[x]
Q(i)⊗Q C '

x2 + 1
⊗Q C ' C[x]

x2 + 1
' C[x]

x− i
× C[x]

x
' C .

+ i
× C

As C-algebra isomorphisms, the corresponding maps are determined by

i⊗ 1 7→ x⊗ 1 7→ x 7→ (x, x) ≡ (i,−i) 7→ (i,−i).

Taking the base change of Q(i) to C lets us see the two distinct embeddings of Q(i) in C,
which are determined by the image of i. Note that Q(i) is canonically embedded in its base
change Q(i)⊗Q C to C via α 7→ α⊗ 1. We have

−1 = i2 = (i⊗ 1)2 = i2 ⊗ 12 = −1⊗ 1 = −(1⊗ 1)

Thus as an( isomorphism) of C-algebras, the basis (1⊗ 1, 1⊗ i) for Q(i)⊗Q C is mapped to
the basis (1, 1), (i,−i) for C× C. For any (α, β) ∈ C× C, the inverse image of

α+ β
(α, β) =

2
(1, 1) +

α− β
(i,

2i
−i)

in Q(i)⊗ C under this isomorphism is

α+ β

2
(1⊗ 1) +

α− β α+ β
(i

2i
⊗ 1) = 1⊗

2
+ i⊗ α− β

.
2i

Now R/Q is an extension of rings, so we can also consider the base change of the Q-algebra
Q(i) to R. But note that R is not separably closed and in particular, it does not contain a
subfield isomorphic to Q(i), thus Proposition 4.39 does not apply. Indeed, as an R-module,
we have Q(i)⊗Q R ' R2, but as an R-algebra, Q(i)⊗Q R ' C 6' R2.
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4.3 Norms and traces

We now introduce the norm and trace of a finite extension B/A. These are often defined only
for field extensions, but in fact the same definition works without modification whenever B
is a free A-module of finite rank. One can generalize further to projective modules (with
some restrictions), but we won’t need this.

Definition 4.42. Let B/A be a (commutative) ring extension in which B is a free A-module
of finite rank. The (relative) norm NB/A(b) and trace TB/A(b) of b (down to A) are the
determinant and trace of the A-linear multiplication-by-b map B → B defined by x 7→ bx.

As a special case, note that if B/A is a finite extension of fields, then B is an A-vector
space of finite dimension, hence a free A-module of finite rank. In practice one computes the
norm and trace by picking a basis for B as an A-module and computing the matrix of the
multiplication-by-b map with respect to this basis; this is an n×n matrix with entries in A
whose determinant and trace do not depend on the choice of basis. It follows immediately
from the definition that NB/A is multiplicative and TB/A is additive. We thus have group
homomorphisms

NB/A : B× → A× and TB/A : B → A.

Example 4.43. Consider A = R and B = C, which has the A-module basis (1, i). For

b = 2 + 3i the matrix of B →×b B with respect to this basis can be written as 2 −3 , thus3 2

2 3
N / (2 + 3i) = det =C

−

( )
R

(
3 2

)
13,

TC/ (2 + 3i) = trR

(
2 −3

= 4.
3 2

)

Warning 4.44. In order to write down the matrix of an A-linear transformation B → B
with respect to basis for B as a free A-module of rank n, we not only need to pick a basis,
we need to decide whether to represent elements of B ' An as row vectors with linear
transformations acting via matrix multiplication on the right, or as column vectors with
linear transformations acting via matrix multiplication on the left. The latter convention is
often implicitly assumed in the literature (as in the example above), but the former is often
used in computer algebra systems (such as Magma).

We now verify that the norm and trace are well behaved under base change.

Lemma 4.45. Let B/A be ring extension with B free of rank n over A, and let ϕ : A→ A′

be a ring homomorphism. The base change B′ = B ⊗A A′ of B to A′ is a free A′-module of
rank n and we for every b ∈ B

ϕ(NB/A(b)) = NB′/A (b′ ⊗ 1) and ϕ(TB/A(b) = TB′/A (b′ ⊗ 1).

Proof. Let b ∈ B, let (b1, . . . , bn) be a basis forB as anA-module, and letM = (mij) ∈ An×n

be the matrix of B →×b B with respect to this basis. Then (b1 ⊗ 1, . . . , bn ⊗ 1) is a basis for
B′ as an A′-module (thus B′ is free of rank n over A′) and M ′ = (ϕ(mij)) ∈ A′n×n is the

matrix of B′
×→b⊗1

B′, and we have

ϕ(NB/A(b)) = ϕ(detM) = detM ′ = NB′/A (b′ ⊗ 1)

ϕ(TB/A(b)) = ϕ(trM) = trM ′ = NB′/A (b′ ⊗ 1)
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Theorem 4.46. Let K be a field with separable closure Ω and let L be a finite étale K-
algebra. For all α ∈ L we have

NL/K(α) =
∏

σ(α) and TL/K(α) =
∑

σ(α).

σ∈HomK(L,Ω) σ∈HomK(L,Ω)

Proof. Let n be the rank of L as a K-module. By the previous lemma and Proposition 4.39.

n

NL/K(α) = NL KΩ/Ω(α⊗ 1) = NΩn/Ω((σ1(α), . . . , σn(α)) =⊗
∏

σi(α).

∏ i=1

The isomorphism L ⊗K Ω → σ Ω = Ωn of Prop. 4.39 sends α ⊗ 1 to (σ1(α), . . . , σn(α)).
Using the standard basis for Ωn, the matrix of multiplication-by-(σ1(α), . . . , σn(α)) is just
the diagonal matrix with σi(α) in the ith diagonal entry. Similarly,

n

TL/K(α) = TL KΩ/Ω(α⊗ 1) = TΩn/Ω((σ σ⊗ 1(α), . . . , σn(α)) =
∑

i(α).
i=1

The proof above demonstrates a useful trick: when working over a field that is not
algebraically/separably closed, base change to an algebraic/separable closure. This often
turns separable field extensions into étale algebras that are no longer fields.

Proposition 4.47. Let L/K be a (not necessarily separable) extension of degree d, let
K be an algebraic closure of K containing L, and let Σ := HomK(L,K). Let α ∈ L×

have minimal polynomial f ∈ K[x] with factorization f(x) =
∏d
i (x − αi) in K[x], and let

e = [L : K(α)]. Then

NL/K(α) =

d

∏d ∑d
αei and TL/K(α) = e αi,

i=1 i=1

In particular, if f(x) =
∑

a xi, then N (α) = (−1)de e
i=0 i L/K a0 and TL/K(α) = −ead−1.

Proof. See Problem Set 2.

Corollary 4.48. Let M/L/K be a tower of finite extensions. Then

NM/K = NL/K ◦NM/L and TM/K = TL/K ◦ TM/L.

Proof. Fix a separable closure Ω of K that contains M . As in the proof of Lemma 4.10,
each σ ∈ HomK(M,Ω) can be identified with a pair (σ1, σ2) with σ1 ∈ HomL(M,Ω) and
σ2 ∈ HomK(L,Ω). We then note that for any α ∈M×,

NM/K(α) = σ(α) = σ2 σ1(α)

σ Hom (M,Ω) σ Hom (L,Ω)


σ Hom (M,Ω)


=

∈

∏
K

∏
,

2∈ K 1∈

∏
NL/K(NM/L(α))

L

and TM/K(α) = TL/K(TM/L(α)) follows similarly


by replacing


products with sums.

Corollary 4.48 actually holds in much greater generality.

Theorem 4.49 (Transitivity of Norm and Trace). Let A ⊆ B ⊆ C be rings with C
free of finite rank over B and B free of finite rank over A. Then C is free of finite rank
over A and

NC/A = NB/A ◦NC/B and TC/A = TB/A ◦ TC/B.

Proof. See [2, §III.9.4].
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