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16 Riemann’s zeta function and the prime number theorem

We now divert our attention from algebraic number theory to talk about zeta functions and
L-functions. As we shall see, every global field has a zeta function that is intimately related
to the distribution of its primes. We begin with the zeta function of the rational field Q,
which we will use to prove the prime number theorem.

We will need some basic results from complex analysis, all of which can be found in any
introductory textbook (such as [1, 2, 3, 7, 12]). A short glossary of terms and a list of the
basic theorems we will use can be found at the end of these notes.1

16.1 The Riemann zeta function

Definition 16.1. The Riemann zeta function is the complex function defined by the series

ζ(s) :=
n

∑
n−s,

≥1

for Re(s) > 1, where n varies over positive integers. It is easy to see that this series
converges absolutely and locally uniformly for Re(s) > 1, thus by Theorem 16.17, it defines
a holomorphic function on Re(s) > 1, since each of term n−s = e−s logn is holomorphic in
this region (and on the entire complex plane).

Theorem 16.2 (Euler product). For Re(s) > 1 we have

ζ(s) =
∑

n−s = p
≥1

∏
(1

n p

− −s)−1,

where the product converges absolutely. In particular, ζ(s) 6= 0 for Re(s) > 1.

The product in the theorem above ranges over primes p. This is a standard practice in
analytic number theory that we will follow: the symbol p always denotes a prime, and any
sum or product over p is understood to be over primes, even if this is not explicitly stated.

Proof. The one-line proof is that unique factorization and absolute convergence imply∑
n−s =

∑
(2e23e3 · · · )−s =

∏∑
p−es =

∏
(1 p−s)−1.

n≥1 e2,e3,...≥0 p e≥0 p

−

However the middle equality deserves some justification, and we should verify that the
infinite product is absolutely convergent.

For each integer m ≥ 1, let Sm be the set of m-smooth numbers: positive integers with
prime factors p ≤ m. Now define

ζm(s) :=
n

∑
n−s,

∈Sm

which converges absolutely and locally uniformly on Re(s) > 1. If p1, . . . , pk are the primes
up to m, then we may write the absolutely convergent sum as

ζ (s) =
∑

n−s =
∑

(pe1 · · · ek −s
∑

−e1s
∑

−e2s · · ·
∑ −eks

m 1 p ) = p1 p2 p .k k
n∈Sm e1,...,ek≥0 e1≥0 e2≥0 ek≥0

1Those familiar with this material should still peruse §16.3.2 which touches on some convergence issues
particularly relevant to number theoretic applications.
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For Re(s) > 1 we have
∑

p−es = 1 + p−s 2
e 0 + p− s + · · · = (1 − p−s)−1, for any prime p.≥

Applying this k times yields the finite product

ζm(s) =
p

∏
(1− p−s)−1.

≤m

We now note that for any δ > 0 the sequence of functions ζm(s) converges uniformly on
Re(s) > 1 + δ to ζ(s); indeed, for any ε > 0 and any such s we have

|ζm(s)− ζ(s)| ≤

∣∣ ∣∣∣∑∣ n−s
∣∣∣∣ ≤ ∑ |n−s| =

∑
n−Re(s) −1

≥

∫ ∞ 1∣n m ∣ n≥m n≥m
≤ x −δdx

m
≤ m−δ < ε
δ

for all sufficiently large m. It follows that the sequence ζm(s) converges∏locally uniformly
to ζ(s) on Re(s) > 1, and therefore the sequence of functions P (s) := (1 − p−s 1

m p≤m )−

does as well. The sequence (logP ) converges locally uniformly to log
∏

(1− p−s 1
m p )− , and

∑
s 1 ∣∣∣∣∑ ∑ 1| log(1− p− )−

p

| =
p
∣∣e≥1

p−es
e

∣∣∣∣ ≤∑ e =
p

∑
e≥1

|p−s|
∑

is

∣∣ (
p

|ps| − 1)−1 <∞

absolutely convergent (hence finite), thus
∏
p(1− p−s)−1 is absolutely convergent (hence

nonzero); here we have used the identity log(1− z) = −
∑

n 1 z
n, valid for |z| < 1.≥

Theorem 16.3 (Analytic continuation I). For Re(s) > 1 we have

1
ζ(s) = + φ(s),

s− 1

where φ(s) is a holomorphic function on Re(s) > 0. Thus ζ(s) extends to a meromorphic
function on Re(s) > 0 that has a simple pole at s = 1 with residue 1 and no other poles.

Proof. For Re(s) > 1 we have

1
ζ(s)−

∑ n+1

= n−s −
∫ ∞

x−sdx = n
s− 1

n≥ n

∑
≥1

(
−s

11

−
∫

x−sdx
n

) n

=
∑∫ +1(

n−s − x−s
)
dx.

nn≥1

For each n ≥ +1
1 the φn(s) :=

∫ n
function (n−s − x−s)dx is holomorphic on Re(s) > 0. Forn

each fixed s in Re(s) > 0 and x ∈ [n, n+ 1] we have∣∫∣∣ x x

|n−s − x−s| = ∣ st−s−1dt
n

∣∣∣∣ ≤ ∫ |s|
n |ts+1|

=

∫ x

n

|s|
t1+Re(s)

dt ≤ |s|
,

n1+Re(s)

and therefore ∫ n+1 ||φn(s)| ≤
n

∣∣n−s − x−s∣∣ s
ds

|≤ .
n1+Re(s)

For any s0 with Re(s0) > 0, if we put ε := Re(s0)/2 and U := B<ε(s0), then for each n ≥ 1,

ε
sup

|s |+
s U
| 0
φn(s)| ≤Mn :=

∈
,

n1+ε

and
∑

nMn = (|s0|+ε)ζ(1+ε) converges. The series
∑

n φn th∑us converges locally normally
on Re(s) > 0. By the Weierstrass M -test (Theorem 16.19), n φn converges to a function
φ(s) = ζ(s)− 1

s−1 holomorphic on Re(s) > 0.
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We now show that ζ(s) has no zeros on Re(s) = 1; this fact is crucial to the prime
number theorem. For this we use the following ingenious lemma, attributed to Mertens.2

Lemma 16.4 (Mertens). For x, y ∈ R with x > 1 we have |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| ≥ 1.

Proof. From the Euler product ζ(s) =
∏
p(1− p−s)−1, we see that for Re(s) > 1 we have

Re(p−ns)
log |ζ(s)| = −

∑
log

p

|1− p−s| = −
∑

Re log(1− p−s) =
p

∑
p n

∑
≥1

,
n

since log |z| = Re log z and log(1−z) = −
∑ zn

n≥1 forn |z| < 1. Plugging in s = x+ iy yields

∑∑ cos(ny log p)
log |ζ(x+ iy)| =

p n≥1

,
npnx

since Re(p−ns) = p−nx Re(e−iny log p) = p−nx cos(−ny log p) = p−nx cos(ny log p). Thus

3 4
∑∑ 3 + 4 cos(ny log p) + cos(2ny log p)

log |ζ(x) ζ(x+ iy) ζ(x+ 2iy)| =
p n≥1

.
npnx

We now note that the trigonometric identity cos(2θ) = 2 cos2 θ − 1 implies

3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0,

Taking θ = ny log p yields log |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| ≥ 0, which proves the lemma.

Corollary 16.5. ζ(s) has no zeros on Re(s) ≥ 1.

Proof. We know from Theorem 16.2 that ζ(s) has no zeros on Re(s) > 1, so suppose
ζ(1 + iy) = 0 for some y ∈ R. Then y 6= 0, since ζ(s) has a pole at s = 1, and we know that
ζ(s) does not have a pole at 1 + 2iy 6= 1, by Theorem 16.3. We therefore must have

lim |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy) =
x→1

| 0, (1)

since ζ(s) has a simple pole at s = 1, a zero at 1 + iy, and no pole at 1 + 2iy. But this
contradicts Lemma 16.4.

16.2 The Prime Number Theorem

The prime counting function π : R→ Z≥0 is defined by

π(x) :=
∑

1;
p≤x

it counts the number of primes up to x. The prime number theorem (PNT) states that

x
π(x) ∼

log x
.

2If this lemma strikes you as pulling a rabbit out of a hat, well, it is. For a slight variation, see [15, IV],
which uses an alternative approach due to Hadamard.
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Here the notation f(x) ∼ g(x) means limx f(x)/g(x) = 1, and one says that f is→∞
asymptotic to; in other words, the functions f and g grow at the same rate, asymptotically.

This conjectured growth rate for π(x) dates back to Gauss and Legendre in the late 18th
century. In fact Gauss believed the asymptotically equivalent but more accurate statement3

dx
π(x) ∼ Li( ) :=

∫ ∞
x

2
.

log x

However it was not until a century later that the prime number theorem was independently
proved by Hadamard [5] and de la Vallée Poussin [9] in 1896. Their proofs are both based
on the work of Riemann [10], who in 1860 showed that there is a precise connection between
the zeros of ζ(s) and the distribution of primes (we shall say more about this later), but
was unable to prove the prime number theorem.

The proof we will give is more recent and due to Newman [8], but it relies on the
same properties of the Riemann zeta function that were exploited by both Hadamard and
de la Vallée, the most essential of which is the fact that ζ(s) has no zeros on Re(s) ≥ 1
(Corollary 16.5). A concise version of Newman’s proof by Zagier can be found in [15]; we will
follow Zagier’s outline but will be slightly more expansive in our presentation. We should
note that there are also “elementary” proofs of the prime number theorem independently
obtained by Erdös [4] and Selberg [11] in the 1940s that do not use the Riemann zeta
function, but they are elementary only in the sense that they do not use complex analysis;
these elementary proofs are actually much more complicated than those that use complex
analysis.

Rather than work directly with π(x), it is more convenient to work with the log-weighted
prime-counting function defined by Chebyshev4

ϑ(x) :=
∑

log p,
p≤x

whose growth rate differs from that of π(x) by a logarithmic factor.

Theorem 16.6 (Chebyshev). We have π(x) ∼ x if and only ϑ(x)log x ∼ x.

Proof. We clearly have 0 ≤ ϑ(x) ≤ π(x) log x, thus

ϑ(x)

x
≤ π(x) log x

.
x

For every ε > 0 we have

ϑ(x) ≥
∑

log p ≥ (1− ε)(log x)
(
π(x) π

x1−ε

− (x1−ε)

<p≤x

≥ (1− ε)(log x)(π(x)

)
− x1−ε),

and therefore
1

π(x) ≤
1− ε

ϑ(x)

log x
+ x1−ε.

3More accurate in the sense that |π(x)− Li(x)| grows more slowly than |π(x)− x as
log x
| x→∞.

4As with most Russian names, there is no canonical way to write Chebyshev in the latin alphabet and
one finds many variations in the literature; in English, the spelling Chebyshev is now the most widely used.
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Thus for all ε > 0 we have

ϑ(x) π(x) log x 1 ϑ(x) log x≤ + .
x
≤

x 1− ε x xε

The last term on the RHS tends to 0 as x , and the lemma follows: by choosing ε→ ∞
sufficiently small we can make the ratios of ϑ(x) to x and π(x) to x/ log x arbitrarily close
together as x→∞, and if one of them tends to 1, then so must the other.

In view of Chebyshev’s result, the prime number theorem is equivalent to the statement
ϑ(x) ∼ x, which is what we will prove. The first step is to show that the asymptotic growth
rate of ϑ(x) is at most linear in x.

Lemma 16.7 (Chebyshev). For x ≥ 1 we have ϑ(x) ≤ (4 log 2)x, thus ϑ(x) = O(x).

Proof. For any integer n ≥ 1, the binomial theorem implies

22n = (1 + 1)2n =
m

∑2n
=0

(
2n

m

) (
2n )!

n

)
(2n≥ = (2
n

≥ exp(
!n!

∏
p = ϑ n)

n<p≤2n

− ϑ(n)),

since (2n)! is divisible by every prime p ∈ (n, 2n] but n! is not divisible by any such p.
Taking logarithms on both sides and reversing the inequality yields

ϑ(2n)− ϑ(n) ≤ 2n log 2,

valid for all integers n ≥ 1. For any integer m ≥ 1 we have

m

ϑ(2m) =
n

∑
=1

(
ϑ(2n)− ϑ(2n−1)

) m

≤ 2
n

∑
n log 2

=1

≤ 2m+1 log 2.

For any real x ≥ 1 we can choose an integer m ≥ 1 so that 2m−1 ≤ x < 2m, and then

ϑ(x) ≤ ϑ(2m) ≤ 2m+1 log 2 = (4 log 2)2m−1 ≤ (4 log 2)x,

as claimed.

In order to prove ϑ(x) ∼ x, we will use a general analytic criterion that is applicable to
any non-decreasing real function f(x).

R → R
∫∞ f(t)−tLemma 16.8. Let f : 1 be a nondecreasing function. If the integral≥ 1 t2

dt
converges then f(x) ∼ x.

Proof. Let F (x) :=
∫ x

1
f(t)−t )
t2

dt. The hypothesis is that limx F (x exists. This implies→∞
that for all λ > 1 and all ε > 0 we must have |F (λx)−F (x)| < ε for all sufficiently large x.

Fix λ > 1 and suppose there is an unbounded sequence (xn) such that f(xn) ≥ λxn for
all n ≥ 1. For each xn we have

t
F (λxn)− F ( n) =

∫ λxn f(t)
x

−
xn t2

dt ≥
∫ λxn

xn

λxn − t
t2

dt =

∫ λ

1

λ− t
dt = c,

t2

for some c > 0, where we used the fact that f is non-decreasing to get the middle inequality.
Taking ε < c, we have |F (λxn) − F (xn)| = c > ε for arbitrarily large xn, a contradiction.
Thus f(x) < λx for all sufficiently large x. A similar argument shows that f(x) > 1xλ
for all sufficiently large x. These inequalities hold for all λ > 1, so limx f(x)/x = 1.→∞
Equivalently, f(x) ∼ x.
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In order to show that the hypothesis of Lemma 16.8 is satisfied for f = ϑ, we will work
with the function H(t) = ϑ(et)e−t − 1; the change of variables t = eu shows that∫ ∞ ϑ(t)− t

1

∞
dt converges H

t2
⇐⇒

∫
(u)du converges .

0

We now recall the Laplace transform.

Definition 16.9. Let h : R>0 → R be a piecewise continuous function. The Laplace trans-
form Lh of h is the complex function defined by

∞
Lh(s) :=

∫
e−sth(t)dt,

0

which is holomorphic function Re(s) > c for any c ∈ R for which h(t) = O(ect).

The following properties of the Laplace transform are easily verified:

• L(g + h) = Lg + Lh, and for any a ∈ R we have L(ah) = αLh.

• If h(t) = a ∈ R is constant then Lh(s) = a .s

• L(eath(t))(s) = L(h)(s− a) for all a ∈ R.

We now define the auxiliary function

Φ(s) :=
∑

p−s log p,
p

which is related to ϑ(x) by the following lemma.

Lemma 16.10. L )(ϑ et Φ(s( ))(s) = is holomorphic on Re(s) > 1.s

Proof. By Lemma 16.7, ϑ(et) = O(et), so L(ϑ(et)) is holomorphic on Re(s) > 1. Let pn be
the nth prime, and put p0 := 0. The function ϑ(et) is constant on t ∈ (log pn, log pn+1), so∫ log pn+1 log pn+1

e−stϑ(et st 1
)dt = ϑ(pn)

log pn

∫
e− dt =

log pn

ϑ(pn)
s

We then have

(
p−sn − p−sn+1

)
.

(Lϑ(et
∞ 1

))(s) =

∫
e−stϑ(et)dt =

0
ϑ

n

∑∞
(pn)

s
=1

(
p−sn − p−sn+1

1

)
=
s

∞∑
n=1

ϑ(pn)p−sn −
1

ϑ
n

∑∞
(pn

s
−1)p−sn

=1

1
= ϑ

n

∑∞
s

=1

(
(pn)− ϑ(pn−1)

)
p−sn

1
=

Φ(
p

n

∑∞
−s s)

s n log pn =
=1

s
.

Let us now consider the function H(t) := ϑ(et)e−t − 1. It follows from the lemma and
standard properties of the Laplace transform that on Re(s) > 0 we have

(LH)(s) = L(ϑ(et)e−t
1

)(s)− (L1)(s) = L(ϑ(et))(s+ 1)−
s

=
Φ(s+ 1)

s+ 1
− 1

.
s
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Lemma 16.11. The function Φ(s)− 1 extends to a meromorphic function on Re(s) > 1
s−1 2

that is holomorphic on Re(s) ≥ 1.

Proof. By Theorem 16.3, ζ(s) extends to a meromorphic function on Re(s) > 0 (which
we also denote ζ(s)) that has only a simple pole at s = 1 and no zeros on Re(s) ≥ 1, by
Corollary 16.5. It follows that the logarithmic derivative ζ ′(s)/ζ(s) of ζ(s) is meromorphic
on Re(s) > 0, and the only pole ζ ′(s)/ζ(s) has on Re(s) ≥ 1 is a simple pole at s = 1 with
residue −1 (see §16.3.1 for standard facts about the logarithmic derivative of a meromorphic
function). In terms of the Euler product we have

ζ ′(s)−

( ′

= (− log ζ(s))′ = − log
∏ ′

(1− p−s)−1

ζ(s
p

)
=

(∑
log(1

p

− p−s)
)

)

=
∑ p−s log p

p
1− p−s

=
∑
p

log p

ps − 1
=
∑
p

(
1

ps
+

1
log

ps(ps − 1)

)
p

= Φ(s) +
∑ log p

p

.
ps(ps − 1)

The sum on the RHS converges absolutely and locally uniformly to a holomorphic function
on Re(s) > 1/2. The LHS is meromorphic on Re(s) > 0, and on Re(s) ≥ 1 is has only a
simple pole at s = 1 with residue 1. It follows that Φ(s) − 1

s−1 extends to a meromorphic

function on Re(s) > 1 that is holomorphic on Re(s)2 ≥ 1.

Corollary 16.12. The functions Φ(s + 1) − 1
s and (LH)(s) = Φ(s+1)

s+1 − 1
s both extend to

meromorphic functions on Re(s) > −1 that are holomorphic on Re(s)2 ≥ 0.

Proof. The first statement follows immediately from the lemma. For the second, note that

Φ(s+ 1) 1

s+ 1
−
s

=
1

s+ 1

(
Φ(s+ 1)− 1

s

)
− 1

s+ 1

is meromorphic on Re(s) > −1 and holomorphic on Re(s)2 ≥ 0, since it is a sum of products
of such functions.

The final step of the proof relies on the following analytic result due to Newman [8].

Theorem 16.13. Let f : R 0 → R be a bounded piecewise continuous function, and suppose≥
its Laplac∫ e transform extends to a holomorphic function g(s) on Re(s) ≥ 0. Then the
integral

∞
f(t)dt converges and is equal to g(0).0

Proof. Without∫ loss of generality we assume f(t) ≤ 1 for all t
τ

≥ 0. For τ ∈ R>0, define
gτ (s) := f(t)e−stdt, By definition

∫∞
f(t)dt = limτ gτ (0), thus it suffices to prove0 0 →∞

lim gτ (0) = g(0).
τ→∞

For r > 0, let γr be the boundary of the region {s : |s| ≤ R and Re(s) ≤ δr} with
δr > 0 chosen so that g is holomorphic on γr; such a δr exists because g is holomorphic
on Re(s) ≥ 0, hence on some open ball B 2δ(y)(iy) for each y ∈ [−r, r], and we may take≤
δr := inf{δ(y) : y ∈ [r,−r]}, which is positive because [−r, r] is compact. Each γr is a

2
simple closed curve, and for each τ > 0 the function h(s) := (g(s) − gτ (s))e−sτ (1 + s )

r2
is
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holomorphic on a region containing γr. Using Cauchy’s integral formula (Theorem 16.26)
to evaluate h(0) yields

1
g(0)− gτ (0) = h(0) =

2πi

∫
γr

(
g(s)− gτ (s)

)
esτ
(

1

s
+

s
ds.

r2

)
(2)

We will show the LHS tends to 0 as τ → ∞ by showing that for any ε > 0 we can set
r = 3/ε > 0 so that the absolute value of the RHS is less than ε for all sufficiently large τ .

Let γ+
r denote the part of γr in Re(s) > 0, a semicircle of radius r. The integrand is

absolutely bounded by 1/r on γ+
r , since for |s| = r and Re(s) > 0 we have

∣∣ 1
g(s)− gτ (s)

∣∣ · ∣∣∣∣esτ (s +
s

r2

)∣∣∣∣ =

∣∣∣∣∫ ∞
τ
f(t)e−stdt

∣∣∣∣ · eRe(s)τ

r
·
∣∣∣r
s

+
s

r

∣∣∣
≤
∫ ∞
τ
e−Re(s)tdt · e

Re(s)τ

r

2 Re(s)

( r

1
=

Re(s)
e−Re(s)τ

)
eRe(s)τ

r

2 Re(s)

r

= 2/r2.

Therefore ∣∣∣ 1∣2πi
∫
γ+r

(
g(s)− gτ (z)

)
ezτ
(

1

s
+

s

r2

)
ds

∣∣∣∣ ≤ 1

2π
· πr · 2

r2
=

1
(3)

r

Now let γr
− be the part of γr in Re(s) < 0, the left half of the perimeter of a rectangle

of height 2r and width 2δr. For any fixed r, the forst term g(s)esτ (s−1 + sr−2) in the
integrand of (2) tends to 0 as τ → ∞ for Re(s) < 0 and |s| ≤ r. For the second term we
note that since gτ (s) is holomorphic on C, it makes no difference if we instead integrate
over the semicircle of radius r in Re(s) < 0. For |s| = r and Re(s) < 0 we then have∣∣∣ 1∣gτ (s)esτ

(
s

+
s

r2

)∣∣∣∣ =

∣∣∣∣∫ τ

0
f(t)e−stdt

∣∣∣∣ · eRe(s)τ

r
·
∣∣∣r
s

+
s

r

∣∣∣
≤
∫ τ

0
e−Re(s)tdt · e

Re(s)τ

r

(−2 Re(s))

( r

1
= 1−

Re(s)
e−Re(s)τ

)
eRe(s)τ

r

(−2 Re(s))

r

= 2/r2 · (1− eRe(s)τ Re(s)),

where the factor (1− eRe(s)T Re(s)) on the RHS tends to 1 as τ
+

→∞ since Re(s) < 0. We
thus obtain the bound 1/r + o(1) when we replace γr with γr

− in (3), and the RHS of (2)
is bounded by 2/r + o(1) as τ →∞. It follows that for any ε > 0, for r = 3/ε > 0 we have

|g(0)− gτ (0)| < 3/r = ε

for all sufficiently large τ . Therefore limτ g→∞ τ (0) = g(0) as desired.

Remark 16.14. Theorem 16.13 is an example of what is known as a Tauberian theorem.
The Laplace transform

∞
(Lf)(s) :=

∫
e−stf(t)dt,

0
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is in general not defined on Re(s) ≤ c, where c is the least c for which f(t) = O(ect).
It may happen that the function Lf has an analytic continuation to a larger domain; for
example, if f(t) = et then (Lf)(s) = 1 extends to a holomorphic function on .−1 C − {1s }
But plugging values of s with Re(s) ≤ c into the integral usually does not work; in our
f(t) = et example, the integral diverges on Re(s) ≤ 1. The theorem says that when Lf
extends to a holomorphic function on the entire half-plane Re(s) ≥ 0, its value at s = 0 is
exactly what would get by naively plugging 0 into the integral defining Lf .

More generally, Tauberian theorems refer to results related to transforms f → T (f) that
allow us to deduce properties of f (such as the convergence of

∞
f(t)dt) from properties0

of T (f) (such as analytic continuation to Re(s) ≥ 0). The term

∫
“Tauberian” was coined by

Hardy and Littlewood and refers to Alfred Tauber, who proved a theorem of this type as a
partial converse to a theorem of Abel.

Theorem 16.15 (Prime Number Theorem). π(x) ∼ x .log x

Proof. H(t) = ϑ(et)e−t − 1 is piecewise continuous and bounded, by Lemma 16.7, and its
Laplace transform extends to a holomorphic function on Re(s) ≥ 0, by Corollary 16.12.
Theorem 16.13 then implies that the integral∫ ∞

H(t)dt =

∫ ∞(
ϑ(et)e−t 1

0 0
−
)
dt

converges. Replacing t with log x, we see that∫ ∞( 1
ϑ(x)

1 x
− 1

)
dx

x
=

∫ ∞
1

ϑ(x)− x
dx

x2

converges. Lemma 16.8 implies ϑ(x) ∼ x, equivalently, π(x) ∼ x
log x , by Theorem 16.6.

One disadvantage of our proof is that it does not give us an error term. Using more
sophisticated methods, Korobov [6] and Vinogradov [14] independently obtained the bound

x
π(x) = Li(x) +O

(
,

exp (log x)3/5+o(1)

)
in which we note that the error term is bounded

(
by O(x/(log

)
x)n) for all n but not by

O(x1−ε) for any ε > 0. Assuming the Riemann Hypothesis, which states the zeros of ζ(s)
in the critical strip 0 < Re(s) < 1 all lie on the line Re(s) = 1 , one can prove2

π(x) = Li(x) +O(x1/2+o(1)).

There thus remains a large gap between what we can prove about the distribution of prime
numbers and what we believe to be true. Remarkably, other than refinements to the o(1)
term appearing in the Korobov-Vinogradov bound, essentially no progress has been made
in this direction in the past 50 years.

16.3 A quick recap of some basic complex analysis

The complex numbers C are a topological field√ under the distance metric d(x, y) = |x− y|
induced by the standard absolute value |z| := zz̄, which is also a norm on C as an R-vector
space; all references to the topology on C (open, compact, convergence, limits, etc...) are
made with this understanding.
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16.3.1 Glossary of terms and basic theorems

Let f and g denote complex functions defined on an open subset of C.

• f(z) )f is differentiable at z0 if limz z0
−f(z0

→ exists.z−z0
• f is holomorphic at z0 if it is differentiable on an open neighborhood of z0.

• f is analytic at z0 if there∑is an open neighborhood of z0 in which f can be defined
by a power series f(z) = a (z − z )nn=0 n 0 ; equivalently, f is infinitely differentiable
and has a convergent Taylor series on an open neighborhood of z0.

• Theorem: f is holomorphic at z0 if and only if it is analytic at z0.

• Theorem: If C is a connected set containing a nonempty open set U and f and g
are holomorphic on C with f U = g| |U , then f|C = g|C .

• With U and C as above, if f is holomorphic on U and g is holomorphic on C with
f U = g U , then g is the (unique) analytic continuation of f to C and f extends to g.| |

• If f is holomorphic on a punctured open neighborhood of z0 and |f(z)| → ∞ as z → z0

then z0 is a pole of f ; note that the set of poles of f is necessarily a discrete set.

• f is meromorphic at z0 if it is holomorphic at z0 or has z0 as a pole.

• Theorem∑ : If f is meromorphic at z0 then it can be defined by a Laurent series
f(z) = n n an(z − z0)n that converges on an open punctured neighborhood of z0.≥ 0

• The order of vanishing ordz0(f) of a nonzero function f that is meromorphic at z0 is
the least index n of any nonzero coefficient an in its Laurent series expansion at z0.
Then z0 is a pole of f iff ordz0(f) < 0 and z0 is a zero of f iff ordz0(f) > 0.

• If ordz0(f) = 1 then z0 is a simple zero of f , and if ordz0(f) = −1 it is a simple pole.

• The residue resz0(f) of a function∑ f meromorphic at z0 is the coefficient a−1 in its
Laurent series expansion f(z) = n≥n an(z

0
− z0)n at z0.

• Theorem: If z0 is a simple pole of f then resz0(f) = limz→z0(z − z0)f(z).

• Theorem: If f is meromorphic on a set S then so is its logarithmic derivative f/f ′,
and f/f ′ has only simple poles in S and resz0(f/f ′) = ordz0(f) for all z0 ∈ V . In
particular the poles of f/f ′ are precisely the zeros and poles of f .

16.3.2 Convergence

Recall that a series
∑∞

n=1 an of complex numbers converges absolutely if the series n |an| of
nonnegative real numbers converges. An equivalent definition is that the function a(n) := an
is integrable with respect to the counting measure µ on the set of positive integers N

∑
. Indeed,

if the series is absolutely convergent then

∑∞
an =

∫
a(n)µ,

n=1 N

and if the series is not absolutely convergent, the integral is not defined. Absolute conver-
gence is effectively built-in to the definition of the Lebesgue integral, which requires that
in order for the function a(n) = x(n) + iy(n) to be integrable, the positive real functions
|x(n)| and |y(n)| must both be integrable (summable), and separately computes sums of
the positive and negative subsequences of (x(n)) and (y(n)) as suprema over finite subsets.
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The measure-theoretic perspective has some distinct advantages. It makes it immedi-
ately clear that we may replace the index set N with any set of the same cardinality, since
the counting measure depends only on the cardinality of N, not its ordering. We are thus
free to sum over any countable index set, including Z, Q, any finite product of countable
sets, and any countable coproduct of countable sets (such as countable direct sums of Z);
such sums are ubiquitous in number theory and many cannot be meaningfully interpreted
as limits of partial sums in the usual sense, since this assumes that the index set is well
ordered (not the case with Q, for example). The measure-theoretic view mak∑es also makes
it clear that we may convert any absolutely convergent sum of the form X×Y into an
iterated sum X Y (or vice versa), via Fubini’s theorem.

We say that

∑
an

∑
infinite product

∏∑ n an of nonzero∏ complex numbers is absolutely con-
vergent when the sum n log an is, in which case n an := exp( 5

n log an). This implies
that an absolutely convergent product cannot converge to zero, and the sequence (an) must
converge to 1 (no matter how we order the an). All of our remarks

∑
above about absolutely

convergent series apply to absolutely convergent products as well.
A series or product of complex functions {fn(z)} is absolutely convergent on S if the

series or product of complex numbers {fn(z0)} is absolutely convergent for all z0 ∈ S.

Definition 16.16. A sequence of complex functions (fn) converges uniformly on S if there is
a function f such that for every ε > 0 there is an integerN for which supz S |fn(z)∈ −f(z)| < ε
for all n ≥ N . The sequence (fn) converges locally uniformly on S if every z0 ∈ S has an
open neighborhood U for which (fn) converges uniformly on U ∩ S. When applied to a
series of function these terms refer to the sequence of partial sums.

Because C is locally compact, locally uniform convergence is the same thing as compact
convergence: a sequence of functions converges locally uniformly on S if and only if it
converges uniformly on every compact subset of S.

Theorem 16.17. A sequence or series of holomorphic functions fn that converges locally
uniformly on an open set U converges to a holomorphic function f on U , and the sequence
or series of derivatives fn

′ then converges locally uniformly to f ′ (and if none of the fn has
a zero in U and f 6= 0, then f has no zeros in U).

Proof. See [3, Thm. III.1.3] and [3, Thm. III.7.2]

Definition∑ 16.18.∑ A series of complex functions n fn(z) converges normally on a set S
if n ‖fn‖ := n supz S |fn(z)| converges. The series∈ n fn(z) converges locally normally
on S if every z0

∑
∈ S has an open neighborhood U on whic

∑
h
∑

n fn(z) converges normally.

Theorem 16.19 (Weierstrass M-test). Every locally normally convergent series of
functions converges absolutely and locally uniformly. Moreover, a series n fn of holomor-
phic functions on∑S that converges locally normally converges to a holomorphic function f
on S, and then

∑
n fn
′ locally normally to f ′.

Proof. See [3, Thm. III.1.6].

Remark 16.20. To show a series
∑

n fn is locally normally convergent on a set S amounts
to proving that for every z0 ∈ S there is an open neighborhood ∑U of z0 and a sequence of
real numbers (Mn) such that |fn(z)| ≤ Mn for z ∈ U ∩ S and nMn < ∞, whence the
term “M -test”.

5In this definition we use the principal branch of log z := log |z|+ iArg z with Arg z ∈ (−π, π).
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16.3.3 Contour integration

We shall restrict our attention to integrals along contours defined by piecewise-smooth
parameterized curves; this covers all the cases we shall need.

Definition 16.21. A parameterized curve is a continuous function γ : [a, b] → C whose
domain is a compact interval [a, b] ⊆ R. We say that γ is smooth if it has a continuous
nonzero derivative on [a, b], and piecewise-smooth if [a, b] can be partitioned into finitely
many subintervals on which the restriction of γ is smooth. We say that γ is closed if
γ(a) = γ(b), and simple if it is injective on [a, b) and (a, b]. Henceforth we will use the term
curve to refer to any piecewise-smooth parameterized curve γ, or to its oriented image of
in the complex plane (directed from γ(a) to γ(b)), which we may also denote γ.

Definition 16.22. Let f : Ω→ C be a continuous function and let γ be a curve in Ω. We
define the contour integral ∫ ∫ b

f(z)dz := f(γ(t))γ′(t)dt,
γ a

whenever the integral∫ on the RHS (which is defined as a Riemann sum in the usual way)
converges. Whether f(z)dz converges, and if so, to what value, does not depend on theγ

parameterization∫ of γ: if∫ γ′ is another parameterized curve with the same (oriented) image
as γ, then f(z)dz = f(z)dz.γ′ γ

We have the following analog of the fundamental theorem of calculus.

Theorem 16.23. Let γ : [a, b] → C be a curve in an open set Ω and let f : Ω → C be a
holomorphic function Then ∫

f ′(z)dz = f(γ(b))
γ

− f(γ(a)).

Proof. See [2, Prop. 4.12].

Recall that the Jordan curve theorem implies that every simple closed curve γ parti-
tions C into two components, one of which we may unambiguously designate as the interior
(the one on the left of our positively oriented curves). We say that γ is contained in an open
set U if both γ and its interior lie in U . The interior of γ is a simply connected set, and if
an open set U contains γ then it contains a simply connected open set that contains γ.

Theorem 16.24 (Cauchy’s Theorem). Let U be an open set containing a simple closed
curve γ. For any function f that is holomor∫ phic on U we have

f(z)dz = 0.
γ

Proof. See [2, Thm. 8.6] (we can restrict U to a simply connected set).

Cauchy’s theorem generalizes to meromorphic functions.

Theorem 16.25 (Cauchy Residue Formula). Let U be an open set containing a simple
closed curve γ. Let f be a function that is meromorphic on U , let z1, . . . , zn be the poles of
f that lie in the interior of γ, and suppose that no pole of f lies on γ. Then∫ ∑n

f(z)dz = 2πi reszi(f).
γ i=1
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Proof. See [2, Thm. 10.5] (we can restrict U to a simply connected set).

To see where the 2πi comes from, consider
∫

dz
γ with γ(t) = eit for t ∈ [0, 2π]. In generalz

one weights residues by a corresponding winding number, but the winding number of a
simple closed curve about a point in its interior is always 1.

Theorem 16.26 (Cauchy’s Integral Formula). Let U be an open set containing a
simple closed curve γ. For any function f holomorphic on U and a in the interior of γ,

1
f(a) =

2πi

∫
γ

f(z)
dz.

z − a

Proof. Apply Cauchy’s residue formula to g(z) = f(z)/(z − a); the only poles of g in the
interior of γ are a simple pole at z = a with resa(g) = f(a).

Cauchy’s residue formula can also be used to recover the coefficients f (n)(a)/n! appearing
in the Laurent series expansion of a meromorphic function at a (apply it to f(z)/(z−a)n+1).
One of many useful consequences of this is Liouville’s theorem, which can be proved by
showing that the Laurent series expansion of a bounded holomorphic function on C about
any point has only one nonzero coefficient (the constant coefficient).

Theorem 16.27 (Liouville’s theorem). Bounded entire functions are constant.

Proof. See [2, Thm. 5.10].

We also have the following converse of Cauchy’s theorem.

Theorem 16.28 (Morera’s Theorem). Let f be a continuous function and on an open
set U , and suppose that for every simple closed curve γ contained in U we have∫

f(z)dz = 0.
γ

Then f is holomorphic on U .

Proof. See [3, Thm. II.3.5].
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