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Lecture #13 10/25/2016

13 Haar measures and the product formula

We now return to our discussion of local and global fields. Our goal in this lecture is to
prove a generalization of the product formula that you proved for Q and Fq(t) on Problem
Set 1 that applies all global fields. The product formula for a global field K is the identity∏

v

‖x‖v = 1,

valid for all x ∈ K×. Here ‖ ‖v denotes the normalized absolute value associated to v, which
ranges over equivalence classes of absolute values on K (also known as places of K). We
will define ‖ ‖v in terms of the Haar measure on the completion of K with respect to v.

13.1 Haar measures

Definition 13.1. Let X be a locally compact Hausdorff space. The σ-algebra Σ of X is
the collection of subsets of X generated by the open and closed sets under countable unions
and countable intersections. Its elements are called Borel sets, or simply measurable sets.
A Borel measure on X is a countably additive function

µ : Σ→ R≥0 ∪ {∞}.

A Radon measure on X is a Borel measure on X that additionally satisfies

1. µ(S) <∞ if S is compact,

2. µ(S) = inf{µ(U) : S ⊆ U, U open},
3. µ(S) = sup{µ(C) : C ⊆ S, C compact},

for all Borel sets S ∈ Σ.1

Definition 13.2. A topological group that is both locally compact and Hausdorff is called
a locally compact group. A (left) Haar measure µ on a locally compact group is a nonzero
Radon measure that is translation invariant, meaning that

µ(E) = µ(x+ E)

for all x ∈ X and Borel sets E (we have written the group operation additively because we
have in mind the additive group of a local field K) .

One defines a right Haar measure analogously, but in most cases they coincide and in
our situation we are working with an abelian group (the additive group of a field), in which
case they necessarily do. The key result on Haar measures, is that they exist and are unique
up to scaling. For compact groups existence was proved by Haar and uniqueness by von
Neumann; the general result for locally compact groups was proved by Weil.

Theorem 13.3 (Weil). Every locally compact group G has a Haar measure. If µ and µ′

are two Haar measure on G, then there is a positive real number λ such that µ′(S) = λµ(S)
for all measurable sets S.

1Some authors additionally require X to be σ-compact (a countable union of compact sets). Local fields
are σ-compact so this distinction will not concern us.
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Proof. See [3, §7.2].

Example 13.4. The standard Euclidean measure on Rn is the unique Haar measure on Rn
for which the unit cube has measure 1.

The additive group of a local field K is a locally compact group (it is a metric space,
so it is automatically Hausdorff). For compact groups G, it is standard to normalize the
Haar measure so that µ(G) = 1, but local fields are never compact and we will always have
µ(K) = ∞. For nonarchimedean local fields the valuation ring A = B≤1(0) is a compact
group, and it is then natural to normalize the Haar measure on K so that µ(A) = 1. But
the key point for us is that there is a unique absolute value on K that is compatible with
every Haar measure µ on K (regardless of how µ is normalized).

Proposition 13.5. Let K be a local field with discrete valuation v, residue field k, and
absolute value

| · |v := (#k)−v(·),

and let µ be a Haar measure on K. For every x ∈ K and measurable set S ⊆ K we have

µ(xS) = |x|vµ(S).

Moreover, the absolute value | |v is the unique absolute value compatible with the topology
on K for which this is true.

Proof. Let A be the valuation ring of K with maximal ideal p. The proposition clearly
holds for x = 0, so let x 6= 0. The map φx : y 7→ xy is an automorphism of the additive
group of K, and it follows that the composition µx = µ ◦φx is a Haar measure on K, hence
a multiple of µ, say µx = λxµ, for some λx ∈ R>0. Define the function χ : K× → R≥0 by
χ(x) := λx = µx(A)/µ(A). Then µx = χ(x)µ, and for all x, y ∈ K× we have

µxy(A)
χ(xy) =

µ(A)
=
µx(yA)

µ(A)
=
χ(x)µy(A)

µ(A)
=
χ(x)χ(y)µ(A)

= χ(x)χ(y).
µ(A)

Thus χ is multiplicative, and we claim that in fact χ(x) = |x|v for all x ∈ K×. Since
both χ and | · |v are multiplicative, it suffices to consider x ∈ A

v(x)
− {0}. For any such x,

the ideal xA is equal to p , since A is a DVR. The residue field k := A/p is finite, hence
A/xA is also finite; indeed it is a k-vector space of dimension v(x) and has cardinality
[A : xA] = (#k)v(x). Writing A as a finite disjoint union of cosets of xA, we have

µ(A) = [A : xA]µ(xA) = (#k)v(x)χ(x)µ(A),

and therefore χ(x) = (#k)−v(x) = |x|v as claimed. It follows that

µ(xS) = µx(S) = χ(x)µ(s) = |x|vµ(S),

for all x ∈ K and S ∈ Σ. To prove uniqueness, if | | is an absolute value on K that induces
the same topology as | |v then for some 0 < c < 1 we have |x| = |x|cv for all x ∈ K×. Let us
fix x ∈ K× with |x|v (take any x with v(x) 6= 0). If | | also satisfies µ(xS) = |x|µ(S) then

µ(xA)

µ(A)
= |x| = |x|cv =

(
µ(xA) c

µ(A)

)
,

which implies c = 1, meaning that | | and | |v are the same absolute value.
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13.2 Places of a global field

Definition 13.6. A place of a global field K is an equivalence class of nontrivial absolute
values on K. We use MK to denote the set of places of K. For each place v we may use | |v
to denote a representative of its equivalence class, and we use Kv to denote the local field
obtained by completing K with respect to | |v; note that Kv does not depend on the choice
of the representative | |v. The place v is called archimedean when the absolute value | |v is
archimedean, and is nonarchimedean otherwise. Every nonarchimedean place v arises from
a discrete valuation on K that we may also denote v.

Example 13.7. As proved in Problem Set 1, for K = Q we have

MK = {| |p : primes p ≤ ∞},

where | | denotes the archimedean absolute value on Q. For K = Fq(t) we may identify∞
M

q(t) with the set of irreducible polynomials in Fq[t] together with the nonarchimedeanF
absolute value |r| = qdeg r. In both cases the places p < ∞ correspond to primes of K∞
(nonzero prime ideals of OK), while the place p =∞ does not.

Remark 13.8. In contrast with Q, there is nothing special about the absolute value | |∞
on Fq(t), it is an artifact of our choice of the separating element t, which we could change
by applying any automorphism t 7→ (at+ b)/(ct+d) of Fq(t). If we put z = 1/t and rewrite
Fq(t) as Fq(z), the absolute value | | on Fq(t) is the same as the absolute value∞ | |z on
Fq(z) corresponding to the irreducible polynomial z ∈ Fq[z].

Definition 13.9. If L/K is an extension of global fields, for every place w of L, any absolute
value | |w that represents the equivalence class w restricts to an absolute value on K that
represents a place v of K; this v is independent of the choice of | |w. We write w|v to
indicate this relationship and say that w extends v.

A global field L is a finite separable extension of either K = Q or K = Fq(t) (for some
finite field Fq). Thus every place v of L extends a place p ≤ ∞ of K. When p < ∞ we
say that v is a finite place and write v -∞. In this case v arises from a discrete valuation
associated to a prime of L lying above the prime p of K; the finite places of L are in one-
to-one correspondence with the primes of L (nonzero prime ideals of its ring of integers).
When p =∞ we call v an infinite place and write v|∞; infinite places do not correspond to
primes of L. If L is a number field the infinite places are precisely the archimedean ones.

Example 13.10. If K is a number field and v|p is a finite place, then Kv is a finite separable
extension of Qp. If we write

K ' Q[x]/(f(x)),

then
Kv ' Qp[x]/(g(x)),

for some irreducible g ∈ Qp[x] appearing in the factorization of f in Qp[x]. When v|∞ is
an infinite place there are only two possibilities: either Kv = R or Kv = C.

Definition 13.11. Let K be a number field and let v|∞ be an infinite place of K. If
Kv ' R then v is a real place of K. If Kv ' C then v is a complex place of K.
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Theorem 13.12. Let L/K be a finite separable extension of global fields and let v be a
place of K. Then there is an isomorphism of finite étale Kv-algebras

L⊗K Kv −
∼→
∏

Lw
w|v

defined by `⊗ x 7→ (`x, . . . , `x).

For nonarchimedean places this follows from part (v) of Theorem 11.20, but here we
give a more general proof that works for any place of K.

Proof. By Proposition∏ 4.35, L⊗K Kv is finite étale Kv-algebra and therefore isomorphic to
a finite product i I Li of finite separable extensions L∈ i/Kv. We need to show that each
Li is the completion Lw of L at a place w|v and every Lw appears exactly once in i Li.

Each Li is a local field, since it is a finite extension of Kv, and it has a unique absolute
value | |w that extends the absolute value | |v on Kv (for any choice of

∏
| |v representing the

place v); this follows from Theorem 10.7 when v is nonarchimedean and is obviously the
case if Kv ' R,C is archimedean, since then either Lw = Kv or Lw ' C and Kv ' R.2

The map L ↪→ L ⊗K Kv ' i Li � Li allows us to view L as a subfield of each Li, so
the absolute value | |w on Li restricts
place w v. This defines a map

∏
to an absolute value on L that uniquely determines a

| {i ∈ I} → {w|v}; we need to show that it is a bijection and
that the induced map φ : {Li∏: i ∈ I} → {Lw : w|v} sends each Li to an isomorphic Lw.

We may view L⊗K Kv ' i Li as an isomorphism of topological rings: on the LHS the
étale Kv-algebra L⊗KKv is a finite dimensional Kv-vector space with a canonical topology
induced by the sup norm, and on the RHS we have the product topology; these topologies
coincide because the absolute value on each Li restricts to the absolute value on Kv, allowing
us to also view the RHS as a normed Kv-vector space, and all norms on a finite dimensional
vector space over a complete field induce the same topology (Proposition 10.6).

The image of the canonical embedding L ↪→ L ⊗K Kv defined by ` 7→ ` ⊗ 1 is dense
because K ⊆ L is dense in Kv: for any nonzero ` ⊗ x in L ⊗K Kv we can approximate it
arbitrarily closely by `/y⊗y = `⊗1 for some nonzero y ∈ K (and similarly for sums of pure
tensors). The image of L is therefore dense in i Li, and in the projection to any Li, or
any Li ×Lj (i =6 j). If φ maps Li to Lw then we necessarily have Li ' Lw by the universal
property of completions (Proposition 8.3): Li is

∏
complete, L is dense in Li, and Lw is the

completion of L with respect to the restriction of the absolute value on Li to L.
If φ is not injective then some Lw appears as two distinct Li and Lj in L⊗KKv ' Li,

but this is impossible because the image of the diagonal embedding L → Lw × Lw is not
dense but the image of L is dense in Li × Lj .

∏
For each w|v we may define a continuous homomorphism of finite étale Kv-algebras:

ϕ : L⊗K Kv → Lw

`⊗ x 7→ `x.

The map ϕ is surjective because its image contains L and is complete, and Lw is the
completion of L. It then follows from Corollary 4.31 that Lw is isomorphic one of the

2The isomorphisms Kv ' R and Lw ' C are isomorphism of topological fields whose archimedean
topology is induced by an absolute value; we always view R and C as local fields whose topology is induced
by the standard Euclidean metric. There are plenty of nonarchimedean topologies on R and C (for each
prime p the field isomorphism Qp ' C lets us put an extension of the p-adic absolute value on C which we
can restrict to R), but none correspond to local fields because they are not locally compact.
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factors Li in L ⊗K Kv '
∏
Li; the absolute value on Li must correspond to the place w,

thus φ(Li) = Lw and φ is surjective.

Corollary 13.13. Let K be a number field and p ≤ ∞ a prime of Q. There is a one-to-
one-correspondence

HomQ(K,Qp)/Gal(Qp/Qp)←→ {v ∈MK : v|p},

between Gal(Qp/Qp)-orbits of Q-embeddings of K into Qp and the places v|p of K.

Before proving the corollary, lets make sure we understand the set of Galois orbits on
the LHS. Each σ ∈ Gal(Qp/Qp) acts on a Q-embedding τ : K → Qp by composition: σ ◦ τ
is also a Q-embedding of K into Qp.

Proof. Theorem 13.12 gives us an isomorphism K ⊗Q Qp '
∏
v|pKv of finite étale Qp-

algebras. Each ϕ ∈ HomQp(K ⊗Q Qp,Qp) can therefore be written as ϕ = φ ◦ π, where

π : K ⊗Q Qp
∼−→
∏
v|pKv → Kv is a projection to one of the Kv and φ ∈ HomQp(Kv,Qp).

The key point is that the image of ϕ is a field (it is an étale Qp-algebra that lies in∏ Qp), and
therefore must be isomorphic to one of the factors inK⊗QQp ' v|pKv by Proposition 4.31.

It follows that we can identify the set HomQp(K ⊗Q Qp,Qp) with the disjoint union of

sets
⊔
v|p HomQp(Kv,Qp). We then have bijections of finite sets

HomQ(K,Qp)←→ HomQp(K ⊗Q Qp,Qp)

←→
⊔

HomQp(Kv,

v|p

Qp).

Each HomQp(Kv,Qp) is a Gal(Qp/Qp)-orbit in HomQp(K ⊗Q Qp,Qp): if we write Kv as
Qp(α) where α ∈ Kv has minimal polynomial f ∈ Qp[x], we have a bijection between Qp-
embeddings Kv → Qp and roots of f in Qp, and Gal(Qp/Qp) acts transitively on both.

The corollary implies that HomQ(K,C)/Gal(C/R) is in bijection with the set {v|∞} of
archimedean places of K; note that Gal(C/R) is just a group of order 2 whose non-trivial
element is complex conjugation. We can partition {v|∞} into real and complex places,
based on whether Kv ' R or Kv ' C. Each real place corresponds to an element of
HomQ(K,R); these are fixed by Gal(C/R) and thus correspond to trivial Gal(C/R)-orbits
of HomQ(K,C) (orbits of size one). Each complex place corresponds to a Gal(C/R)-orbit
of size two in HomQ(K,C); these are conjugate pairs of embeddings K → C whose image
does not lie in R.

Definition 13.14. Let K be a number field. Elements of HomQ(K,R) are real embeddings
and elements of HomQ(K,C) whose image does not lie in R are complex embeddings.

There is a one-to-one correspondence between real embeddings and real places, but
complex embeddings come in conjugate pairs; and each pair corresponds to a single complex
place.

Corollary 13.15. Let K be a number field with r real places and s complex places. Then

[K : Q] = r + 2s.
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Proof. Recall that [K : Q] = # HomQ(K,C) (write K = Q[x]/(f(x)) and note that the
elements of HomQ(K,C) are determined by choosing a root of f in C to be the image of x).
The action of Gal(C/R) on HomQ(K,C) has r orbits of size 1, and s orbits of size 2.

Example 13.16. Let K = Q[x]/(x3 − 2). There are three embeddings K ↪→ C, one for
each root of x3 − 2; explicitly:

(1) x
√

7→ 3
2, (2) x 7→ e2πi/3 · 3

√
2, (3) x 7→ e4πi/3 · 3

√
2.

The first embedding is real, while the second two are complex and conjugate to each other.
Thus K has r = 1 real place and s = 1 complex place, and we have [K : Q] = 1 ·1+2 ·1 = 3.

We conclude this section with a result originally due to Brill [2], which relates the parity
of the number of complex places to the sign of the absolute discriminant of a number field.

Proposition 13.17. Let K be a number field with s complex places, and let α1, . . . , αn be
a Z-basis for OK . The sign of DK := disc(α s

1, . . . , αn) ∈ Z is (−1) .

Proof. Let HomQ(K,C) = {σ1, . . . , σn} and consider the matrix A := [σi(aj)]ij with de-
terminant detA =: x + yi ∈ C; recall that DK = (detA)2, by Proposition 12.6. Each
real embedding σi corresponds to a row of A fixed by complex conjugation, while each
pair of complex conjugate embeddings σi, σi corresponds to a pair of rows of A that are
interchanged by complex conjugation. Swapping two rows negates the determinant, thus

x+ yi = detA = (−1)s ¯detA = (−1)s(x− yi).

Either (−1)s = 1, in which case y = 0 and DK = x2 has sign +1 = (−1)s, or (
2

−1)s = −1,
in which case x = 0 and DK = −y has sign −1 = (−1)s.

13.3 The product formula for global fields

Definition 13.18. Let K be a global field. For each place v of K the normalized absolute
value ‖ ‖v : Kv → R≥0 on the completion of K at v is defined by

µ(xS)‖x‖v := ,
µ(S)

where µ is a Haar measure on Kv and S is any measurable set with µ(S) 6= 0 (we can always
take S = Av := {x ∈ Kv : |x|v ≤ 1} of Kv).

This definition is independent of the choice of µ and S (by Theorem 13.3). If v is
nonarchimedean then the normalized absolute value ‖ ‖v is precisely the absolute value | |v
defined in Proposition 13.5. If v is a real place then the normalized absolute value ‖ ‖v is
just the usual Euclidean absolute value | |R on R, since for the Euclidean Haar measure µR
on R we have µR(xS) = |x|RµR(S) for every measurable set S. But when v is a complex
place the normalized absolute value ‖ ‖v is the square of the Euclidean absolute value | |C
on C, since in C we have µC(xS) = |x|2 µC C(S).

Remark 13.19. When v is a complex place the normalized absolute value ‖ ‖v is not an
absolute value, because it does not satisfy the triangle inequality. For example, if K = Q(i)
and v|∞ is the complex place of K then ‖1‖v = |1|2 = 1 butC

‖1 + 1‖v = ‖2‖v = |2|2 = 4 > 2 =C ‖1‖v + ‖1‖v.
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Nevertheless, the normalized absolute value ‖ ‖v is always multiplicative and compatible
with the topology on Kv in the sense that the open balls B<r(x) := {y ∈ Kv : ‖y−x‖v < r}
are a basis for the topology on Kv; these are the properties that we care about for the
product formula (and for the topology on the ring of adéles AK that we will see later).

Lemma 13.20. Let L/K be a finite separable extension of global fields, let v be a place
of K and let w|v be a place of L. Then

‖x‖w = ‖NLw/Kv
(x)‖v.

Proof. The lemma is trivially true if [Lw : Kv] = 1 so assume [Lw : Kv] > 1. If v is
archimedean then Lw ' C and Kv ' R, in which case for any x ∈ Lw we have

‖x‖w = µ(xS)/µ(S) = |x|2 =C |xx|R = |NC/ (x)R |R = ‖NLw/Kv
(x)‖v,

where | |R and | |C are the Euclidean absolute values on R and C.
We now assume v is nonarchimedean. Let πw and πv be uniformizers for the local fields

Kw and Lv, respectively, and let f be the degree of the corresponding residue field extension
w(x)

kw/kv. Without loss of generality, we may assume x = πw , since ‖x‖v = |x|v depends
only on w(x). Theorem 6.9 and Proposition 13.5 imply

‖N f f
Lw/Kv

(πw)‖v = ‖πv ‖v = (#kv)
− ,

so ‖NLw/Kv
(x)‖v = (#kv)

−fw(x). Proposition 13.5 then implies

‖x‖w = (#kw)−w(x) = (#kv)
−fw(x) = ‖NLw/Kv

(x)‖v.

Remark 13.21. Note that if v is a nonarchimedean place of K extended by a place w|v
of L/K, the absolute value ‖ ‖w is not the unique absolute value on Lw that extends the
absolute value on ‖ ‖v on Kv given by Theorem 10.7, it differs by a power of n = [Lw : Kv],
but it is equivalent to it. It might seem strange to use a normalization here that does
not agree with the one we used when considering extensions of local fields in Lecture 9.
The difference is that here we are thinking about a single global field K that has many
different completions Kv, and we want the normalized absolute values on the various Kv

to be compatible (so that the product formula will hold). By contrast, in Lecture 9 we
considered various extensions Lw of a single local field Kv and wanted to normalize the
absolute values on the Lw compatibly so that we could work in Kv and any of its extensions
(all the way up to Kv) using the same absolute value. These two objectives cannot be met
simultaneously and it is better to use the “right” normalization in each setting.

Theorem 13.22 (Product Formula). Let L be a global field. For all x ∈ L× we have

v∈

∏
‖x‖v = 1,

ML

where ‖ ‖v denotes the normalized absolute value for each place v ∈ML.

Proof. The global field L is a finite separable extension of K = Q or K = F (t).3q Let p be
a place of K. By Theorem 13.12, any basis for L as a K-vector space is also a basis for

L⊗K Kp '
∏

Lv
v|p

3Here we are using the fact that if Fq is the field of constants of L (the largest finite field in L), then L
is a finite extension of Fq(z) and we can choose some t ∈ Fq(z) − Fq so that Fq(z) ' Fq(t) and L/Fq(t) is
separable (such a t is called a separating element).
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as a Kv-vector space. Thus

NL/K(x) = N(L⊗KKp)/Kp
(x) =

∏
NLv/Kp

(x).

v|p

Taking normalized absolute values on both sides yields∥∥NL/K(x)
∥∥ =
p

∏
‖NLv/Kp

(x)‖p = ‖x‖v.
v|p

∏
v|p

We now take the product of both sides over all places p ∈MK to obtain

p∈

∏
‖NL/K(x)‖p = ‖x‖v = ‖x‖v.

MK p∈

∏
MK

∏
v|p v∈

∏
ML

The LHS is equal to 1, by the product formula for K proved on Problem Set 1.

With the product formula in hand, we can now give an axiomatic definition of a global
field, which up to now we have simply defined as a finite extension of Q or Fq(t), due to
Emil Artin and George Whaples [1].

Definition 13.23. A global field is a field K whose completion at each of its places v ∈MK

is a local field, and which has a product formula of the form

v∈

∏
‖x‖v = 1,

MK

where each normalized absolute value ‖ ‖v : Kv → R≥0 satisfies ‖ ‖v = | |mv
v for some

absolute value | |v representing v and some fixed mv ∈ R>0.

Theorem 13.24 (Artin-Whaples). Every global field is a finite extension of Q or Fq(t).

Proof. See Problem Set 7.
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