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12 The different and the discriminant

12.1 The different

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field,
L/K is a finite separable extension, and B is the integral closure of A in L (a Dedekind
domain with fraction field L). We would like to understand the primes that ramify in L/K.
Recall that a prime q|p of L is unramified if and only if the residue field B/q is a finite
étale A/p-algebra; this is equivalent to requiring vq(pB) = 1 with B/q a separable extension
of A/p. A prime p of K is unramified if and only if all the primes q|p lying above it are
unramified.1

Our main tools for doing are the different ideal DB/A and the discriminant ideal DB/A.
The different ideal is an ideal of B and the discriminant ideal is an ideal of A (the norm
of the different ideal, in fact). We will show that the primes of B that ramify are exactly
those that divide DB/A, the primes of A that ramify are exactly those that divide DB/A.
Moreover, the valuation vq(DB/A) will give us information about the ramification index
eq (its exact value in the tamely ramified case). We could just define DB/A and DB/A to
have the properties we want, but the key is to define them in an intrinsic way that makes
it possible to compute them without knowing which primes ramify; indeed, there main
purpose is to allow us to determine these primes.

Recall from Lecture 5 the trace pairing L×L→ K defined by (x, y) 7→ TL/K(xy); under
our assumption that L/K is separable, it is a perfect pairing (see Proposition 5.18). An
A-lattice M in L is a finitely generated A-module that spans L as a K-vector space (see
Definition 5.8). Associated to any A-lattice M is its dual lattice (with respect to the trace
pairing), which is defined by

M∗ := {x ∈ L : TL/K(xm) ∈ A ∀m ∈M}

(see Definition 5.10); it is an A-lattice isomorphic to the dual module M∨ := HomA(M,A)
(see Theorem 5.11), and in our AKLB setting we have M∗∗ = M (see Proposition 5.14).

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely
generated as an A module (since B is finite over A). If I is nonzero, it spans L (if e1, . . . , en
is a K-basis for L in B and a ∈ I is nonzero then ae1, . . . , aen is a K-basis for L in I). It
follows that every element of the group IB of nonzero fractional ideals of B is an A-lattice
in L. We now show that IB is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB and let I ∈ IB. Then I∗ ∈ IB.

Proof. As noted above, I is an A-lattice in L, as is its dual lattice I∗ which is a nonzero
finitely generated A-module; if I∗ is a B-module then it is certainly finitely generated, hence
a fractional ideal of B. Thus to show I∗ ∈ IB we just need to show that I∗ is a B-module.
For any b ∈ B and x ∈ I∗ ⊆ L the product bx lies in L, we just need to check that it lies in
I∗. For any m ∈ I we have bm ∈ I, since I is a B-module, and TL/K(x(bm)) ∈ A, by the
definition of I∗. Thus TL/K((bx)m) = TL/K(x(bm)) ∈ A so bx ∈ I∗.

1As usual, by a prime of A or K (resp., B or L) we mean a nonzero prime ideal of A (resp., B). In our
AKLB setting the notation q|p means that q is a prime of B lying above p (so p = q∩A and q divides pB).

Lecture by Andrew Sutherland

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2016/lecture-notes/MIT18_785F16_lec5.pdf
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2016/lecture-notes/MIT18_785F16_lec5.pdf
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2016/lecture-notes/MIT18_785F16_lec5.pdf
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2016/lecture-notes/MIT18_785F16_lec5.pdf
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2016/lecture-notes/MIT18_785F16_lec5.pdf


Definition 12.2. Assume AKLB. The different ideal is the inverse of B∗ in IB. That is,

B∗ := {x ∈ L : TL/K(xb) ∈ A for all b ∈ B},
D 1

B/A := (B∗)− = (B : B∗) = {x ∈ L : xB∗ ⊆ B}.

Note that B ⊆ B∗, since TL/K(ab) = TL/K(b) ∈ A for all a, b ∈ B, and this implies
(B∗)−1 ⊆ B−1 = B; so DB/A is an ideal, not just a fractional ideal.

We now show that the different respects localization and completion.

Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

S−1DB/A = DS−1B/S−1A.

Proof. This follows the fact that inverses and duals are both compatible with localization;
see Lemmas 3.13 and 5.13. Note that a multiplicative subset of A is also a multiplica-
tive subset of B and the localization of a B-module with respect to S is the same as its
localization as an A-module with respect to S.

Proposition 12.4. Assume AKLB and let q|p be a prime of B. Then

D ˆ
ˆ ˆ = Bq.Bq/A /Ap

DB

Proof. We can assume without loss of generality that A is a DVR by localizing at p. Let
L̂ := L⊗ ˆ ˆ ˆK. By (5) of Theorem 11.20, we have L =

∏
q p Lq. This is not∑a field, in general,|

but Tˆ ˆ is defined as for any ring extension, and we∏have Tˆ ˆ (x) = q p T| ˆ ˆ (x).L/K L/K Lq/K

ˆ ⊗ ˆ ˆ ˆ ˆNow let B := B A. By Corollary 11.23, B = q|pBq and therefore B∗ '
∏ ˆ, q|pBq

∗

ˆ(since the trace is just a sum of traces). It follows that B∗

ˆ
' B∗⊗ ˆ

AA. Thus B∗ generates the
fractional ideal Bq

∗ ∈ I ˆ . Taking inverses,Bq
DB/A = (B∗)−1 ˆgenerates (Bq

∗)−1 = D ˆ ˆ.Bq/A

12.2 The discriminant

Definition 12.5. Let S/R be a ring extension with S free as an R-module. For any
x1, . . . , xn ∈ S we define the discriminant

disc(x1, . . . , xn) := det[TS/R(xixj)]i,j ∈ R.

(note that the e1, . . . , en may be any elements of S, they need not be an R-basis).

In our AKLB setup, we have in mind the case where e1, . . . , en ∈ B is a basis for L as
a K-vector space, in which case disc(e1, . . . , en) = det[TL/K(eiej)]ij ∈ A. Note that we are
not assuming B is a free A-module, but L is certainly a free K-module, so we can compute
the discriminant of any set of elements of L (including elements of B).

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let Ω/K be a
field extension for which there are distinct σ1, . . . , σn ∈ HomK(L,Ω). For any e1, . . . , en ∈ L

2disc(e1, . . . , en) = (det[σi(ej)]ij) ,

and for any x ∈ L we have

disc(1, x, x2, . . . , xn−1) =
∏

2(σi(x)
i<j

− σj(x)) .
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Note that such an Ω exists, since L/K is separable (we can take a normal closure).

Proof. For 1 ≤ i, j ≤ nn we have TL/K(eiej) =
∑

k=1 σk(eiej), by Theorem 4.46. Therefore

disc(e1, . . . , en) = det[TL/K(eiej)]ij

= det ([( σk(ei)]ik[σk(ej)]kj)

= det [σk(ei)]ik[σk(ej)]
t
jk

2= (det[σi(ej)]ij)

)

since the determinant is multiplicative and and detM = detM t for any matrix M .
Now let x ∈ L and put ei := xi−1 for 1 ≤ i ≤ n. Then

2 2disc(1, x, x2, . . . , xn−1) =
(
det[σi(x

j−1)]ij
)

=
∏

(σi(x)− σj(x)) ,
i<j

since [σi(x)j−1)]ij is a Vandermonde matrix.

Definition 12.7. For a polynomial f(x) =
∏

i(x− αi), the discriminant of f is

disc(f) :=
∏

(α 2
i .

i<j

− αj)

Equivalently, if A is a Dedekind domain, f ∈ A[x] is a monic separable polynomial, and α
is the image of x in A[x]/(f(x)), then

disc(f) = disc(1, α, α2, . . . , αn−1) ∈ A.

Example 12.8. disc(x2 + bx+ c) = b2 − 4c and disc(x3 + ax+ b) = −4a3 − 27b2.

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated
A-module that contains a basis for L as a K-vector space, but we would like to define the
discriminant of M in a way that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If e1, . . . , en ∈ M ⊆ L and
e′1, . . . , e

′
n ∈M ⊆ L are two bases for M , then

disc(e′1, . . . , e
′
n) = u2 disc(e1, . . . , en)

for some unit u ∈ A×; this follows from the fact that the change of basis matrix P ∈ An×n

is invertible and its determinant is therefore a unit u. This unit gets squared because we
need to apply the change of basis twice in order to change T(eiej) to T(e′ie

′
j). Explicitly,

writing bases as row-vectors, let e = (e1, . . . , en), e′ = (e′1, . . . , e
′
n) with e′ = eP . Then

disc(e′) = det[TL/K(e′ie
′
j)]ij

= det[TL/K((eP )i(eP )j)]ij

= det[P tTL/K(eiej)P ]ij

= (detP t) disc(e)(detP )

= (detP )2 disc(e),

where we have used the fact that TL/K is K-linear, the determinant is multiplicative, and
detP t = detP .
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This actually gives us an unambiguous definition when A = Z: the only units in Z are
u = ±1, so we always have u2 = 1 and discriminant of every basis is the same. In general
we want to take the principal fractional ideal of A generated by disc(e1, . . . , en), which does
not depend on the choice of basis (multiplying a fractional ideal by a unit does nothing).

Definition 12.9. Assume AKLB and let M be an A-lattice in L. The discriminant D(M)
of M is the A-submodule of K generated by {disc(e1, . . . , en) : e1, . . . , en ∈M}.

When M is free, D(M) is the principal fractional ideal generated by disc(e1, . . . , en),
where e := e1, . . . , en is any A-basis for M . Given any n-tuple e′ = (e′1, . . . , e

′
n) of elements

in M , if we view e and e′ as row vectors we can write e′ = eP for some (not necessarily
invertible) matrix P ∈ An×n, and we always have disc(e′) = (detP )2 disc(e) ∈ (disc(e)).

Lemma 12.10. Assume AKLB and let M ′ ⊆M be free A-lattices in L. If D(M ′) = D(M)
then M ′ = M .

Proof. Fix A-bases e and e′ for M and M ′. Then e′ = eP for some P ∈ An×n, and we have

D(M ′) = (disc(e′)) = (disc(eP )) = ((detP )2) disc(e)) = (detP )2D(M),

as fractional ideals of A. The fact that e is a basis for L and the trace pairing is nondegen-
erate guarantees that disc(e) 6= 0. Now A is a Dedekind domain, so if D(M ′) = D(M) then
(detP ) must be the unit ideal (multiply both sides by D(M)−1), and detP must be a unit,
which implies P is invertible. We then have e = e′P−1, thus M ⊆M ′ and M ′ = M .

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then D(M) ∈ IA.

Proof. The A-module D(M) ⊆ K is nonzero because M contains a K-basis e = (e1, . . . , en)
for L and disc(e) 6= 0 because the trace pairing is nondegenerate. To show that D(M) is
a finitely generated as an A-module we use the usual trick: show that it is a submodule
of a noetherian module. Let N be the free A-lattice in L generated by e. The A-lattice
M is finitely generated, so we can pick a nonzero a ∈ A such that M ⊆ a−1N : write each
generator for M in terms of the K-basis e and let a be the product of all the denominators
that appear. We then have D(M) ⊆ D(a−1N), and since a−1N is a free A-lattice, D(a−1N)
is a principal fractional ideal of A, hence a noetherian A-module (since A is noetherian),
and this implies that the A-submodule D(M) is finitely generated.

Definition 12.12. Assume AKLB. The discriminant of L/K is the discriminant of B as
an A-module:

DL/K := DB/A := D(B) ∈ IA.

Example 12.13. Consider the case A = Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1, i) and we can compute DL/K in three ways:

T (1 1) T (1 i) 2 0• disc(1, i) = det

[
L/K · L/K ·

= det = 4.
TL/K(i

−· 1) TL/K(i · i)

] [
0 −2

]
• The non-trivial automorphism( [ of])L/K fixes 1 and sends i to

2
−i, so we could instead

1 1
compute disc(1, i) = det = ( =

i
−2i)2−i −4.

• We have B = Z[i] = Z[x]/(x2 + 1) and can compute disc(x2 + 1) = −4.
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In every case the discriminant ideal DL/K is (−4) = (4).

Remark 12.14. If A = Z then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant DL of the number field L
to be the integer disc(e1, . . . , en) ∈ Z, for any basis (e1, . . . , en) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u2 = 1
for any u ∈ Z×; in particular, the sign of DL is well defined. In the example above, the
absolute discriminant is DL = −4 (not 4).

We now show that the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then
S−1DB/A = DS−1B/S .−1A

Proof. Let x = s−1 disc(e , . . . , e ) ∈ S−11 n DB/A for some s S and e1, . . . , en B. Then
x = s2n−1 disc(s−1 1

∈ ∈
e1, . . . , s

− en) lies in DS−1B/S−1A. This proves the forward inclusion.
Conversely, for any e1, . . . , en ∈ S−1B we can choose a single s ∈ S ⊆ A so that each sei

lies in B. We then have disc(e1, . . . , en) = s−2n disc(se 1
1, . . . , sen) ∈ S− DB/A, which proves

the reverse inclusion.

We have now defined two different ideals associated to a finite separable extension of
Dedekind domains B/A in the AKLB setup. We have the different DB/A, which is a
fractional ideal of B, and the discriminant DB/A, which is a fractional ideal of A. We now
relate these two ideals in terms of the ideal norm NB/A : IB → IA, which for I ∈ IB is
defined as NB/A(I) := (B : I)A, where (B : I)A is the module index (see Definitions 6.1
and 6.4). We recall that NB/A(I) is also equal to the ideal generated by the image of I
under the field norm NL/K ; see Corollary 6.8.

Theorem 12.16. Assume AKLB. Then DB/A = NB/A(DB/A).

Proof. The different and discriminant are both compatible with localization, by Propo-
sitions 12.3 and 12.15, and the fractional ideals DB/A and NB/A(DB/A) of A are both
determined by the intersections of their localizations at prime ideals (Proposition 2.7), so
it suffices to prove that the theorem holds when A = Ap is a DVR, and in particular a PID
(here we are using the fact that A is a Dedekind domain). In this case B is a free A-lattice
in L, and we can choose a basis (e1, . . . , en) for B as an A-module. The dual A-lattice

B∗ = {x ∈ L : TL/K(xb) ∈ A ∀b ∈ B} ∈ IB
is also a free A-mo∑ dule, with basis (e1

∗, . . . , e∗n) uniquely determined by TL/K(e∗i ej) = δij .
If we write ei = aije

∗
j in terms of the K-basis (e∗1, . . . , e

∗
n) for L then

TL/K(eiej) = TL/K

(∑
aike

∗
kej

)
=
∑

aikTL/K(e∗kej) =
∑

aikδkj = aij ,
k k k

so P := [TL/K(eiej)]ij is the change-of-basis matrix from e∗ := (e∗1, . . . , e
∗
n) to e := (e1, . . . , en)

(as row vectors we have e = e∗P ). If we let φ : B∗ → B denote the linear transformation
with matrix P , then φ is an isomorphism of free A-modules and

DB/A =
(
det[TL/K(eiej)]ij = (detφ) = [B∗ :B]A,

where [B∗ :B]A is the module index (see Definition

)
6.1). Applying Corollary 6.7 yields

DB/A = [B∗ :B]A = NB/A((B∗)−1B) = N 1
B/A((B∗)− ) = NB/A(DB/A).
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Corollary 12.17. Assume AKLB. The discriminant DB/A is an A-ideal.

Proof. The different DB/A is a B-ideal, and the field norm NL/K sends elements of B to A;
it follows that DB/A = NB/A(DB/A) = ({NL/K(x) : x ∈ DB/A}) is an A-ideal.

12.3 Ramification

Having defined the different and discriminant ideals we now consider what they can tell us
about ramification. Recall that in our AKLB setup, if p is a prime of A with

pB =
∏

eq 1
1 · · · q

er
r ,

each prime qi is unramified if and only if ei = 1 and the residue field B/qi is a separable
extension of A/p, and p is unramified if and only if all the qi are unramified. As noted in
Definition 5.33, an equivalent definition is that B/pB is a finite étale A/p-algebra (a finite
product of finite separable extensions of A/p). To see this, note that the Chinese remainder
theorem implies

B/pB ' B/ eq 1
1 × · · · ×B/q

er
r ,

and if any ei > 1 then B/pB contains a nonzero nilpotent element (take a uniformizer for qi).
In this case B/pB cannot be étale, since a product of fields has no nonzero nilpotents. If
every ei = 1, then B/pB is isomorphic to the product of the residue fields B/qi, each of
which is a finite extension of A/p. In this case B/pB is étale if and only if these extensions
are all separable, equivalently, if and only if all the qi are unramified.

We now relate the property of being finite étale to the discriminant.

Lemma 12.18. Let k be a field and let R be a commutative k-algebra that is a finite
dimensional k-vector space with basis r1, . . . , rn. Then R is a finite étale k-algebra if and
only if disc(r1, . . . , rn) = det[TR/k(rirj)]ij 6= 0.

Proof. We first note that the choice of basis is immaterial, changing the basis will not change
whether the discriminant is zero or nonzero.

Suppose R contains a nonzero nilpotent r (so rm = 0 for some m > 1). In this case R
cannot be finite étale, and we can extend {r} to a basis, so we may assume r1 = r is
nilpotent. Every multiple of r1 is also nilpotent, and it follows that the first row of the matrix
[TR/k(rirj)]ij is zero, since the trace of any nilpotent element s is zero (the eigenvalues of the
multiplication-by-s map must all be zero). Therefore disc(r1, . . . , rn) det[TR/k(rirj)]ij = 0.

Suppose R contains no nonzero nilpotents. Then R is isomorphic to a product of fields,
each of which is a finite extension of k (this is a standard result of commutative algebra
which follows, for example, from Lemmas 10.52.2-5 of [3]). Without loss of generality we
can assume our basis contains k-bases for each of these field extensions, grouped together
so that the matrix [TR/k(rirj)]ij is block diagonal. The determinant is then nonzero if and
only if the determinant of each block is nonzero, so we can reduce to the case where R/k
is a field extension. The proof then follows from the fact that the trace pairing TR/k is
nondegenerate if and only if R/k is separable (see Proposition 5.18).

Theorem 12.19. Assume AKLB, let q be a prime of B lying above a prime p of A. The
extension L/K is unramified at q if and only if q does not divide DB/A, and it is unramified
at p if and only if p does not divide DB/A.
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Proof. We first consider the different ideal DB/A. By Proposition 12.4, the different is
compatible with completion, so it suffices to consider the case that A and B are complete
DVRs (complete K at p and L at q and apply Theorem 11.20). We then have [L : K] = eqfq,
where eq is the ramification index and fq is the residue field degree, and pB = qeq .

Since B is a DVR with maximal ideal q, we must have DB/A = qm for some m ≥ 0. By
Theorem 12.16 we have

DB/A = NB/A(DB/A) = NB/A(qm) = pfqm.

Thus q|DB/A if and only if p|DB/A. Since A is a PID, B is a free A-module and we may
choose an A-module basis e1, . . . , en for B that is also a K-vector space for L. Let k := A/p,
and let ei be the reduction of ei to the k-algebra R := B/pB. Then (e1, . . . , en) is a k-basis
for R: it clearly spans, and we have [R : k] = [B/qeq : Ap] = eqfq = [L : K] = n.

Since B has an A-module basis, we may compute its discriminant as

DB/A = (disc(e1, . . . , en)).

Thus p|DB/a if and only if disc(e1, . . . , en) ∈ p, equivalently, disc(e1, . . . , en) = 0 (note
that disc(e1, . . . , en) is a polynomial in the TL/K(eiej) and TR/k(eiej) is the trace of the
multiplication-by-eiej map, which is the same as the reduction to k = A/p of the trace of
the multiplication-by-eiej map TL/K(eiej) ∈ A). By Lemma 12.18, disc(e1, . . . , en) = 0 if
and only if the k-algebra B/pB is not finite étale, equivalently, if and only if p is ramified.
Thus p|DB/A if and only if p is ramified. There is only one prime q above p, so we also have
q|DB/A if and only if q is ramified.

We now note an important corollary of Theorem 12.19.

Corollary 12.20. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. Both A and B are Dedekind domains, so the ideals DB/A and DB/A both have unique
factorizations into prime ideals in which only finitely many primes appear.

12.4 The discriminant of an order

Recall from Lecture 6 that an order O is a noetherian domain of dimension one whose
conductor is nonzero (see Definitions 6.15 and 6.18), and the integral closure of an order
is always a Dedekind domain. In our AKLB setup, the orders with integral closure B are
precisely the A-lattices in L that are rings (see Proposition 6.21); if L = K(α) with α ∈ B
then A[α] is an example. The discriminant DO/A of such an order O is its discriminant
D(O) as an A-module. The fact that O ⊆ B implies that D(O) ⊆ DB/A is an A-ideal.

If O is an order of the form A[α], where α ∈ B generates L = K(α) with minimal
polynomial f ∈ A[x], then O is a free A-lattice with basis 1, α, . . . , αn−1, where n = deg f ,
and we may compute its discriminant as

D /A = (disc(1, α, . . . , αn−1)) = (disc(f)),O

which is a principal A-ideal contained in DB/A. If B is also a free A-lattice, then as in the
proof of Lemma 12.10 we have

D /A = (detP )2DB/A = [B :O O]2ADB/A,
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where P is the matrix of the A-linear map φ : B → O that sends an A-basis for B to an
A-basis for O and [B :O]A is the module index (a principal A-ideal).

In the important special case where A = Z and L is a number field, the integer (detP )2

is uniquely determined and it necessarily divides disc(f), the generator of the principal ideal
D(O) = D(A[α]). It follows that if disc(f) is squarefree then we must have B = O = A[α].
More generally, any prime p for which vp(disc(f)) is odd must be ramified, and any prime
that does not divide disc(f) must be unramified.

Another useful observation that applies when A = Z is that in this case the module
index [B : O]Z = ([B : O]) is the principal ideal generated by the index of O in B (as
Z-lattices), and we have

DO/A = [B :O]2DB/A.

Example 12.21. Consider A = Z, K = Q with L = Q(α), where α3−α−1 = 0. We would
like to determine the primes that ramify in L and describe its ring of integers B = OL. We
can compute the absolute discriminant of Z[α] as

disc(1, α, α2) = disc(x3 − x− 1) = −4(−1)3 − 27(−1)2 = −23.

This immediately implies that 23 is the only prime of that ramifies. The Z-ideal D(Z[α])
is principal (because Z is a PID) and therefore must be generated by the integer −23/m2,
where m = [OL :Z[α]]; this implies m = 1, so OL = Z[α].

More generally, we have the following theorem.

Theorem 12.22. Assume AKLB and let O be an order with integral closure B and con-
ductor c. Then DO/A = NB/A(c)DB/A.

Proof. See Problem Set 6.

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant
and different in many cases.

Proposition 12.23. Assume AKLB. If B = A[α] for some α ∈ L and f ∈ A[x] is the
minimal polynomial of α, then

DB/A = (f ′(α))

is the B-ideal generated by f ′(α).

Proof. See Problem Set 6.

The assumption B = A[α] in Proposition 12.23 does not always hold, but if we want to
compute the power of q that divides DB/A we can complete L at q and K at p = q∩A so that
A and B become complete DVRs, in which case B = A[α] does hold (by Lemma 10.15), so
long as the residue field extension is separable (always true if K and L are global fields, since
the residue fields are then finite, hence perfect). The following definition and proposition
give an alternative approach.

Definition 12.24. Assume AKLB and let α ∈ B have minimal polynomial f ∈ A[x]. The
different of α is defined by {

f ′(α) if L = K(α),
δB/A(α) =

0 otherwise.
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Proposition 12.25. Assume AKLB. Then DB/A =
(
δB/A(α) : α ∈ B

)
.

Proof. See [1, Thm. III.2.5].

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.

Theorem 12.26. Assume AKLB and let q be a prime of L lying above p = q∩A for which
the residue field extension (B/q)/(A/p) is separable. Let s = vq(DB/A), let e = eq be the
ramification index of q over p, and let p be the characteristic of A/p. If p 6 | e then

s = e− 1

and if p|e then
e ≤ s ≤ e− 1 + evp(e)

Proof. See Problem Set 6.

We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.27. Assume AKLB and let M/L be a finite separable extension and let C
be the integral closure of A in M . Then

DC/A = DC/B · DB/A

(where the product on the right is taken in C), and

D = (D )[M :L]
C/A B/A NB/A(DC/B).

Proof. See [2, Prop. III.8].

If M/L/K is a tower of finite separable extensions, we note that the primes p of K that
ramify are precisely those that divide either DL/K or NL/K(DM/L).
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