18.785 Number theory I Fall 2016
Lecture #12 10/20/2016

12 The different and the discriminant

12.1 The different

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field,
L/K is a finite separable extension, and B is the integral closure of A in L (a Dedekind
domain with fraction field L). We would like to understand the primes that ramify in L/K.
Recall that a prime q|p of L is unramified if and only if the residue field B/q is a finite
étale A/p-algebra; this is equivalent to requiring vq(pB) = 1 with B/q a separable extension
of A/p. A prime p of K is unramified if and only if all the primes q|p lying above it are
unramified.L

Our main tools for doing are the different ideal Dp,4 and the discriminant ideal Dpgy.
The different ideal is an ideal of B and the discriminant ideal is an ideal of A (the norm
of the different ideal, in fact). We will show that the primes of B that ramify are exactly
those that divide Dp/4, the primes of A that ramify are exactly those that divide Dp/4.
Moreover, the valuation vy(Dp / 4) will give us information about the ramification index
eq (its exact value in the tamely ramified case). We could just define D/ and Dp 4 to
have the properties we want, but the key is to define them in an intrinsic way that makes
it possible to compute them without knowing which primes ramify; indeed, there main
purpose is to allow us to determine these primes.

Recall from Lecture 5 the trace pairing L x L — K defined by (x,y) — T,k (ry); under
our assumption that L/K is separable, it is a perfect pairing (see Proposition 5.18). An
A-lattice M in L is a finitely generated A-module that spans L as a K-vector space (see
Definition 5.8). Associated to any A-lattice M is its dual lattice (with respect to the trace
pairing), which is defined by

M*:={zeL:Tyg(xm)ec AVme M}

(see Definition 5.10); it is an A-lattice isomorphic to the dual module MY := Homa (M, A)
(see Theorem 5.11), and in our AK LB setting we have M** = M (see Proposition 5.14).

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely
generated as an A module (since B is finite over A). If I is nonzero, it spans L (if e1,..., e,
is a K-basis for L in B and a € I is nonzero then ae,...,ae, is a K-basis for L in I). It
follows that every element of the group Zp of nonzero fractional ideals of B is an A-lattice
in L. We now show that Zp is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB and let I € Tg. Then I* € Ipg.

Proof. As noted above, I is an A-lattice in L, as is its dual lattice I* which is a nonzero
finitely generated A-module; if I* is a B-module then it is certainly finitely generated, hence
a fractional ideal of B. Thus to show I* € Zp we just need to show that I* is a B-module.
For any b € B and x € I'* C L the product bz lies in L, we just need to check that it lies in
I*. For any m € I we have bm € I, since I is a B-module, and T7,/x (z(bm)) € A, by the
definition of I*. Thus Ty /x((bx)m) = T g (x(bm)) € A so bx € I*. O

! As usual, by a prime of A or K (resp., B or L) we mean a nonzero prime ideal of A (resp., B). In our
AK LB setting the notation ¢|p means that q is a prime of B lying above p (so p = qN A and q divides pB).
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Definition 12.2. Assume AKLB. The different ideal is the inverse of B* in Zg. That is,

B*i={x € L: Ty k(xb) € Aforall b€ B},
Dpja = (B*)"'=(B:B*)={x€L:zB* C B}.
Note that B C B*, since T k(ab) = Tp x(b) € A for all a,b € B, and this implies
(B*)"1 C B! =B;so Dp/4 is an ideal, not just a fractional ideal.
We now show that the different respects localization and completion.

Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

Sil'DB/A = DSAB/SAA.

Proof. This follows the fact that inverses and duals are both compatible with localization;
see Lemmas 3.13 and 5.13. Note that a multiplicative subset of A is also a multiplica-
tive subset of B and the localization of a B-module with respect to S is the same as its
localization as an A-module with respect to S. O

Proposition 12.4. Assume AKLB and let q|p be a prime of B. Then
Déq/Ap = Dp/aBy.

Proof. We can assume without loss of generality that A is a DVR by localizing at p. Let
L:=L® K. By (5) of Theorem 11.20, we have L = Hq‘p Lq. This is not a field, in general,
but Tj . is (ileﬁned as f?r any ring extension, arid we haveA Ti/f((x) = qlp '];iq/k(x). )
Now let B := B® A. By Corollary 11.23, B = th’ By, andAtherefore B* ~ Hq‘p B;
(since the trace is just a sum of traces). It follows that B* ~ B*®4 A. Thus B* generates the
fractional ideal By € L, Taking inverses, D 4 = (B*)~! generates (B;)_l =Dg i U

12.2 The discriminant

Definition 12.5. Let S/R be a ring extension with S free as an R-module. For any
T1,...,T, € 5 we define the discriminant

disc(z1, ..., zn) = det[Tg p(wix;)]i; € R
(note that the eq,..., e, may be any elements of S, they need not be an R-basis).

In our AK LB setup, we have in mind the case where e1,...,¢e, € B is a basis for L as
a K-vector space, in which case disc(es, ..., e,) = det[Tr /k(e;e;)]i; € A. Note that we are
not assuming B is a free A-module, but L is certainly a free K-module, so we can compute
the discriminant of any set of elements of L (including elements of B).

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let /K be a
field extension for which there are distinct o1, . ..,0, € Homg (L,$2). For anyey,...,e, € L

disc(e,...,en) = (det[o'i(ej)]ij)27

and for any x € L we have

disc(1,z,2%,...,2" ") = [[ (oi(2) — oj(x))*.
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Note that such an {2 exists, since L/K is separable (we can take a normal closure).

Proof. For 1 <i,j <n we have T/ (eie;) = > or(eie;), by Theorem 4.46. Therefore

disc(er, ..., e,) = det[Tr /k(eiej)]ij
= det ([ox(ei)]irlon(ej)]k;)
= det ([O'k(ei)]ik [Uk(@j)};'k)
= (deto;(e;)]i;)?

since the determinant is multiplicative and and det M = det M* for any matrix M.
Now let z € L and put e; := z*~! for 1 <i <n. Then

disc(1,z,22,..., 2" 1) = (det[ai(xj_l)]ij)Q = H (oi(x) — aj(a:))Z,
1<J
since [0;(x)7~1)];; is a Vandermonde matrix. O

Definition 12.7. For a polynomial f(x) = [[,(x — «;), the discriminant of f is

disc(f) := H(ai — ;).

1<J

Equivalently, if A is a Dedekind domain, f € Alx] is a monic separable polynomial, and «
is the image of = in Alz]|/(f(x)), then

disc(f) = disc(1, a,a?,...,a" 1) € A.
Example 12.8. disc(z? + bz + ¢) = b? — 4c and disc(z® + azx + b) = —4a® — 2702,

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated
A-module that contains a basis for L as a K-vector space, but we would like to define the
discriminant of M in a way that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If e1,...,e, € M C L and
el,...,e,, € M C L are two bases for M, then

disc(ey, ..., e)) = u?disc(er, ..., en)
for some unit u € A*; this follows from the fact that the change of basis matrix P € A™*"™
is invertible and its determinant is therefore a unit w. This unit gets squared because we
need to apply the change of basis twice in order to change T(e;e;) to T(efe’). Explicitly,

writing bases as row-vectors, let e = (eq,...,e,), € = (€],...,¢},) with ¢ = eP. Then
disc(e’) = det[Tyx (ei€})]s
= det[Ty,x((eP)i(eP);)];;
= det[P'T /x (eie;) Py

= (det P") disc(e)(det P)
= (det P)*disc(e),

where we have used the fact that Tk is K-linear, the determinant is multiplicative, and
det P* = det P.
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This actually gives us an unambiguous definition when A = Z: the only units in Z are
u = +1, so we always have u? = 1 and discriminant of every basis is the same. In general
we want to take the principal fractional ideal of A generated by disc(eq, ..., ey), which does
not depend on the choice of basis (multiplying a fractional ideal by a unit does nothing).

Definition 12.9. Assume AK LB and let M be an A-lattice in L. The discriminant D(M)
of M is the A-submodule of K generated by {disc(ei,...,ep) :€1,...,e, € M}.

When M is free, D(M) is the principal fractional ideal generated by disc(eq,...,ey),
where e := eq,..., e, is any A-basis for M. Given any n-tuple €' = (€],...,e}) of elements
in M, if we view e and ¢’ as row vectors we can write ¢/ = eP for some (not necessarily
invertible) matrix P € A"*" and we always have disc(e’) = (det P)?disc(e) € (disc(e)).

Lemma 12.10. Assume AKLB and let M' C M be free A-lattices in L. If D(M') = D(M)
then M' = M.

Proof. Fix A-bases e and ¢’ for M and M’. Then e’ = eP for some P € A™*", and we have
D(M') = (disc(e')) = (disc(eP)) = ((det P)?) disc(e)) = (det P)>2D(M),

as fractional ideals of A. The fact that e is a basis for L and the trace pairing is nondegen-
erate guarantees that disc(e) # 0. Now A is a Dedekind domain, so if D(M') = D(M) then
(det P) must be the unit ideal (multiply both sides by D(M)~!), and det P must be a unit,
which implies P is invertible. We then have e = /P!, thus M C M’ and M’ = M. O

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then D(M) € Zy4.

Proof. The A-module D(M) C K is nonzero because M contains a K-basis e = (eg,...,ey)
for L and disc(e) # 0 because the trace pairing is nondegenerate. To show that D(M) is
a finitely generated as an A-module we use the usual trick: show that it is a submodule
of a noetherian module. Let N be the free A-lattice in L generated by e. The A-lattice
M is finitely generated, so we can pick a nonzero a € A such that M C a~!N: write each
generator for M in terms of the K-basis e and let a be the product of all the denominators
that appear. We then have D(M) C D(a"'N), and since a~' N is a free A-lattice, D(a~*N)
is a principal fractional ideal of A, hence a noetherian A-module (since A is noetherian),
and this implies that the A-submodule D(M) is finitely generated. O

Definition 12.12. Assume AKLB. The discriminant of L/K is the discriminant of B as
an A-module:
DL/K = DB/A = D(B) € IA.

Example 12.13. Consider the case A =Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1,7) and we can compute Dy g in three ways:

. L Trr(1-1) Tr(-i)| 2 0] _
o disc(1,7) = det [TL/K(Z"l) Ty (i -1) = det 0 —a| = 4.

e The non-trivial automorphism of L/K fixes 1 and sends i to —i, so we could instead

2
compute disc(1,4) = <det [1 1]) = (—2i)? = —4.

T —1

e We have B = Z[i] = Z[z]/(z* + 1) and can compute disc(z? + 1) = —4.
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In every case the discriminant ideal Dy is (—4) = (4).

Remark 12.14. If A = Z then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant Dy, of the number field L
to be the integer disc(ey, ..., e,) € Z, for any basis (e, ..., e,) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u? = 1
for any w € Z*; in particular, the sign of Dy, is well defined. In the example above, the
absolute discriminant is Dy, = —4 (not 4).

We now show that the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then

S_IDB/A = DS—lB/S—lA-

Proof. Let x = s~ !disc(eq,...,e,) € S_IDB/A for some s € S and ey,...,e, € B. Then

r = s> ldisc(stey,..., s te,) lies in Dg-1p5/5-14- This proves the forward inclusion.
Conversely, for any e1, ..., e, € S~'B we can choose a single s € S C A so that each se;

lies in B. We then have disc(eq, ..., e,) = s 2" disc(sey, . .., se,) € S'_lDB/A, which proves

the reverse inclusion. O

We have now defined two different ideals associated to a finite separable extension of
Dedekind domains B/A in the AKLB setup. We have the different Dp,/4, which is a
fractional ideal of B, and the discriminant Dp/,, which is a fractional ideal of A. We now
relate these two ideals in terms of the ideal norm Np /arIp — Ia, which for I € Tp is
defined as Np/a(I) := (B : I)a, where (B : I)4 is the module index (see Definitions 6.1
and 6.4). We recall that Np/4(I) is also equal to the ideal generated by the image of [
under the field norm Nz, /g see Corollary 6.8.

Theorem 12.16. Assume AKLB. Then Dg/a = Np/a(Dp/a)-

Proof. The different and discriminant are both compatible with localization, by Propo-
sitions 12.3 and 12.15, and the fractional ideals Dp/4 and Np,a(Dp/4) of A are both
determined by the intersections of their localizations at prime ideals (Proposition 2.7), so
it suffices to prove that the theorem holds when A = A, is a DVR, and in particular a PID
(here we are using the fact that A is a Dedekind domain). In this case B is a free A-lattice
in L, and we can choose a basis (e1, ..., e,) for B as an A-module. The dual A-lattice

B*={zeL:Tyg(rb)c AVbe B} €Ip

is also a free A-module, with basis (e],...,e};) uniquely determined by Ty, k(efe;) = dy;-.

r n
If we write e; = a;jje} in terms of the K-basis (e],...,e;) for L then

Ty (eiej) = Tr x <Z aik67§6j> = auTykleie;) = Y andy; = aij,
k

k k

so P = [Tk (eie;)ij is the change-of-basis matrix from e* := (ef, ..., e;) toe = (e1,...,en)
(as row vectors we have e = e*P). If we let ¢: B* — B denote the linear transformation
with matrix P, then ¢ is an isomorphism of free A-modules and

Dpya = (det[Tp/k(eie;)]ij) = (det ¢) = [B*: B]a,
where [B*: B] 4 is the module index (see Definition 6.1). Applying Corollary 6.7 yields
Dpja = [B*:Bla = Np/s((B*)"'B) = Ng,4((B*)™") = Np/a(Dg/a)- O
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Corollary 12.17. Assume AKLB. The discriminant Dg4 is an A-ideal.

Proof. The different Dp/ 4 is a B-ideal, and the field norm N7, i sends elements of B to A;
it follows that Dg/a = Np/a(Dpja) = {Np k() : * € Dpya}) is an A-ideal. O

12.3 Ramification

Having defined the different and discriminant ideals we now consider what they can tell us
about ramification. Recall that in our AK LB setup, if p is a prime of A with

pB =[] -ae,

each prime ¢; is unramified if and only if e; = 1 and the residue field B/q; is a separable
extension of A/p, and p is unramified if and only if all the g; are unramified. As noted in
Definition 5.33, an equivalent definition is that B/pB is a finite étale A/p-algebra (a finite
product of finite separable extensions of A/p). To see this, note that the Chinese remainder
theorem implies

B/pB ~ B/q7' x --- x B/q;",

and if any e; > 1 then B/pB contains a nonzero nilpotent element (take a uniformizer for q;).
In this case B/pB cannot be étale, since a product of fields has no nonzero nilpotents. If
every e; = 1, then B/pB is isomorphic to the product of the residue fields B/q;, each of
which is a finite extension of A/p. In this case B/pB is étale if and only if these extensions
are all separable, equivalently, if and only if all the g; are unramified.

We now relate the property of being finite étale to the discriminant.

Lemma 12.18. Let k be a field and let R be a commutative k-algebra that is a finite
dimensional k-vector space with basis r1,...,mn. Then R is a finite étale k-algebra if and
only if disc(r1, ..., ) = det[T g/, (rirs)]i; # 0.

Proof. We first note that the choice of basis is immaterial, changing the basis will not change
whether the discriminant is zero or nonzero.

Suppose R contains a nonzero nilpotent r (so 7™ = 0 for some m > 1). In this case R
cannot be finite étale, and we can extend {r} to a basis, so we may assume r; = 7 is
nilpotent. Every multiple of r; is also nilpotent, and it follows that the first row of the matrix
[T Rk (riry)]ij is zero, since the trace of any nilpotent element s is zero (the eigenvalues of the
multiplication-by-s map must all be zero). Therefore disc(r1, ..., r,) det[T g/ (rir;)]i; = 0.

Suppose R contains no nonzero nilpotents. Then R is isomorphic to a product of fields,
each of which is a finite extension of k& (this is a standard result of commutative algebra
which follows, for example, from Lemmas 10.52.2-5 of [3]). Without loss of generality we
can assume our basis contains k-bases for each of these field extensions, grouped together
so that the matrix [Tg i (ri7;)]i; is block diagonal. The determinant is then nonzero if and
only if the determinant of each block is nonzero, so we can reduce to the case where R/k
is a field extension. The proof then follows from the fact that the trace pairing Tg/ is
nondegenerate if and only if R/k is separable (see Proposition 5.18). O

Theorem 12.19. Assume AKLB, let q be a prime of B lying above a prime p of A. The
extension L/K is unramified at q if and only if q does not divide Dg,4, and it is unramified
at p if and only if p does not divide Dpy.
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Proof. We first consider the different ideal Dp,4. By Proposition 12.4, the different is
compatible with completion, so it suffices to consider the case that A and B are complete
DVRs (complete K at p and L at q and apply Theorem 11.20). We then have [L : K] = eq fq,
where e is the ramification index and f; is the residue field degree, and pB = q®.

Since B is a DVR with maximal ideal q, we must have Dg,4 = q" for some m > 0. By
Theorem 12.16 we have

Dpja = Np/a(Dpja) = Npja(q™) = phm.

Thus q|Dpg,4 if and only if p[Dp,/4. Since A is a PID, B is a free A-module and we may
choose an A-module basis e, ..., e, for B that is also a K-vector space for L. Let k := A/p,
and let €; be the reduction of e; to the k-algebra R := B/pB. Then (é1,...,€,) is a k-basis
for R: it clearly spans, and we have [R: k] = [B/q% : Ay] = eqfq = [L: K] =n.

Since B has an A-module basis, we may compute its discriminant as
Dp/a = (disc(er, ..., en)).

Thus p|Dp/, if and only if disc(er,...,e,) € p, equivalently, disc(ey,...,e,) = 0 (note
that disc(ei,...,e,) is a polynomial in the Ty k(e;e;) and Tk, (€;€;) is the trace of the
multiplication-by-€;e; map, which is the same as the reduction to k = A/p of the trace of
the multiplication-by-e;e; map Ty (e;e;) € A). By Lemma 12.18, disc(éy, ..., e,) = 0 if
and only if the k-algebra B/pB is not finite étale, equivalently, if and only if p is ramified.
Thus p|Dpg/4 if and only if p is ramified. There is only one prime g above p, so we also have
q/Dp/4 if and only if q is ramified. O

We now note an important corollary of Theorem 12.19.

Corollary 12.20. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. Both A and B are Dedekind domains, so the ideals Dg/4 and Dp/4 both have unique
factorizations into prime ideals in which only finitely many primes appear. O

12.4 The discriminant of an order

Recall from Lecture 6 that an order O is a noetherian domain of dimension one whose
conductor is nonzero (see Definitions 6.15 and 6.18), and the integral closure of an order
is always a Dedekind domain. In our AK LB setup, the orders with integral closure B are
precisely the A-lattices in L that are rings (see Proposition 6.21); if L = K(a) with o € B
then Ala] is an example. The discriminant Dy, of such an order O is its discriminant
D(O) as an A-module. The fact that O C B implies that D(O) C Dp/4 is an A-ideal.

If O is an order of the form Ala], where @ € B generates L = K(«a) with minimal
polynomial f € A[z], then O is a free A-lattice with basis 1,«,...,a" !, where n = deg f,
and we may compute its discriminant as

Dpjg = (disc(1, v, . ... o)) = (disc(f)),

which is a principal A-ideal contained in Dp/4. If B is also a free A-lattice, then as in the
proof of Lemma 12.10 we have

Do = (det P)?Dpg s = [B: O3 D)4,
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where P is the matrix of the A-linear map ¢: B — O that sends an A-basis for B to an
A-basis for O and [B:0]4 is the module index (a principal A-ideal).

In the important special case where A = Z and L is a number field, the integer (det P)?
is uniquely determined and it necessarily divides disc(f), the generator of the principal ideal
D(O) = D(A|a]). Tt follows that if disc(f) is squarefree then we must have B = O = Ala].
More generally, any prime p for which v,(disc(f)) is odd must be ramified, and any prime
that does not divide disc(f) must be unramified.

Another useful observation that applies when A = Z is that in this case the module
index [B: Olz = ([B: Q]) is the principal ideal generated by the index of O in B (as
Z-lattices), and we have

Doja = [B:O)*Dpya.

Example 12.21. Consider A = Z, K = Q with L = Q(a), where o® —a—1 = 0. We would
like to determine the primes that ramify in L and describe its ring of integers B = Or. We
can compute the absolute discriminant of Z[a] as

disc(1, o, 0?) = disc(z® —x — 1) = —4(—1)* — 27(—1)% = —23.

This immediately implies that 23 is the only prime of that ramifies. The Z-ideal D(Z[«])
is principal (because Z is a PID) and therefore must be generated by the integer —23/m?2,
where m = [Or:Z[a]]; this implies m = 1, so O = Z[a].

More generally, we have the following theorem.

Theorem 12.22. Assume AKLB and let O be an order with integral closure B and con-
ductor ¢. Then Dp/a = Np/a(c)Dp/a-

Proof. See Problem Set 6. O

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant
and different in many cases.

Proposition 12.23. Assume AKLB. If B = Ala] for some a € L and f € Alz] is the
minimal polynomial of o, then

Dpja = (f'(a))
is the B-ideal generated by f'(c).

Proof. See Problem Set 6. O

The assumption B = Afa] in Proposition 12.23 does not always hold, but if we want to
compute the power of g that divides Dp/4 we can complete L at q and K at p = gN A so that
A and B become complete DVRs, in which case B = A[a] does hold (by Lemma 10.15), so
long as the residue field extension is separable (always true if K and L are global fields, since
the residue fields are then finite, hence perfect). The following definition and proposition
give an alternative approach.

Definition 12.24. Assume AK LB and let o € B have minimal polynomial f € A[z]. The
different of o is defined by

(o) {70 L= K@),
B/4 0 otherwise.
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Proposition 12.25. Assume AKLB. Then Dpy = (6B/A(a) o€ B).
Proof. See [1, Thm. III.2.5]. O

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.

Theorem 12.26. Assume AKLB and let q be a prime of L lying above p = qN A for which
the residue field extension (B/q)/(A/p) is separable. Let s = vq(Dpsa), let e = eq be the
ramification index of q over p, and let p be the characteristic of A/p. If pfe then

s=e—1

and if ple then
e<s<e—1+evy(e)

Proof. See Problem Set 6. O

We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.27. Assume AKLB and let M/L be a finite separable extension and let C
be the integral closure of A in M. Then

Dcya =Dcyp - Dpja
(where the product on the right is taken in C), and
Deja = (Dpya) M Ng a(Deyp).
Proof. See [2, Prop. 111.8]. O

If M/L/K is a tower of finite separable extensions, we note that the primes p of K that
ramify are precisely those that divide either Dy, /i or N g (Dar/r)-
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