12 The different and the discriminant

12.1 The different

We continue in our usual $A K L B$ setup: A is a Dedekind domain, K is its fraction field, L / K is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain with fraction field L). We would like to understand the primes that ramify in L / K. Recall that a prime $\mathfrak{q} \mid \mathfrak{p}$ of L is unramified if and only if the residue field B / \mathfrak{q} is a finite étale A / \mathfrak{p}-algebra; this is equivalent to requiring $v_{\mathfrak{q}}(\mathfrak{p} B)=1$ with B / \mathfrak{q} a separable extension of A / \mathfrak{p}. A prime \mathfrak{p} of K is unramified if and only if all the primes $\mathfrak{q} \mid \mathfrak{p}$ lying above it are unramified. ${ }^{1}$

Our main tools for doing are the different ideal $\mathcal{D}_{B / A}$ and the discriminant ideal $D_{B / A}$. The different ideal is an ideal of B and the discriminant ideal is an ideal of A (the norm of the different ideal, in fact). We will show that the primes of B that ramify are exactly those that divide $\mathcal{D}_{B / A}$, the primes of A that ramify are exactly those that divide $D_{B / A}$. Moreover, the valuation $v_{\mathfrak{q}}\left(\mathcal{D}_{B / A}\right)$ will give us information about the ramification index $e_{\mathfrak{q}}$ (its exact value in the tamely ramified case). We could just define $\mathcal{D}_{B / A}$ and $D_{B / A}$ to have the properties we want, but the key is to define them in an intrinsic way that makes it possible to compute them without knowing which primes ramify; indeed, there main purpose is to allow us to determine these primes.

Recall from Lecture 5 the trace pairing $L \times L \rightarrow K$ defined by $(x, y) \mapsto \mathrm{T}_{L / K}(x y)$; under our assumption that L / K is separable, it is a perfect pairing (see Proposition 5.18). An A-lattice M in L is a finitely generated A-module that spans L as a K-vector space (see Definition 5.8). Associated to any A-lattice M is its dual lattice (with respect to the trace pairing), which is defined by

$$
M^{*}:=\left\{x \in L: \mathrm{T}_{L / K}(x m) \in A \forall m \in M\right\}
$$

(see Definition 5.10); it is an A-lattice isomorphic to the dual module $M^{\vee}:=\operatorname{Hom}_{A}(M, A)$ (see Theorem 5.11), and in our $A K L B$ setting we have $M^{* *}=M$ (see Proposition 5.14).

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely generated as an A module (since B is finite over A). If I is nonzero, it spans L (if e_{1}, \ldots, e_{n} is a K-basis for L in B and $a \in I$ is nonzero then $a e_{1}, \ldots, a e_{n}$ is a K-basis for L in I). It follows that every element of the group \mathcal{I}_{B} of nonzero fractional ideals of B is an A-lattice in L. We now show that \mathcal{I}_{B} is closed under the operation of taking duals.

Lemma 12.1. Assume $A K L B$ and let $I \in \mathcal{I}_{B}$. Then $I^{*} \in \mathcal{I}_{B}$.
Proof. As noted above, I is an A-lattice in L, as is its dual lattice I^{*} which is a nonzero finitely generated A-module; if I^{*} is a B-module then it is certainly finitely generated, hence a fractional ideal of B. Thus to show $I^{*} \in \mathcal{I}_{B}$ we just need to show that I^{*} is a B-module. For any $b \in B$ and $x \in I^{*} \subseteq L$ the product $b x$ lies in L, we just need to check that it lies in I^{*}. For any $m \in I$ we have $b m \in I$, since I is a B-module, and $T_{L / K}(x(b m)) \in A$, by the definition of I^{*}. Thus $\mathrm{T}_{L / K}((b x) m)=\mathrm{T}_{L / K}(x(b m)) \in A$ so $b x \in I^{*}$.

[^0]Definition 12.2. Assume $A K L B$. The different ideal is the inverse of B^{*} in \mathcal{I}_{B}. That is,

$$
\begin{aligned}
B^{*} & :=\left\{x \in L: \mathrm{T}_{L / K}(x b) \in A \text { for all } b \in B\right\} \\
\mathcal{D}_{B / A} & :=\left(B^{*}\right)^{-1}=\left(B: B^{*}\right)=\left\{x \in L: x B^{*} \subseteq B\right\}
\end{aligned}
$$

Note that $B \subseteq B^{*}$, since $\mathrm{T}_{L / K}(a b)=T_{L / K}(b) \in A$ for all $a, b \in B$, and this implies $\left(B^{*}\right)^{-1} \subseteq B^{-1}=B$; so $\mathcal{D}_{B / A}$ is an ideal, not just a fractional ideal.

We now show that the different respects localization and completion.
Proposition 12.3. Assume $A K L B$ and let S be a multiplicative subset of A. Then

$$
S^{-1} \mathcal{D}_{B / A}=\mathcal{D}_{S^{-1} B / S^{-1} A}
$$

Proof. This follows the fact that inverses and duals are both compatible with localization; see Lemmas 3.13 and 5.13 . Note that a multiplicative subset of A is also a multiplicative subset of \bar{B} and the localization of a B-module with respect to S is the same as its localization as an A-module with respect to S.

Proposition 12.4. Assume $A K L B$ and let $\mathfrak{q | p}$ be a prime of B. Then

$$
\mathcal{D}_{\hat{B}_{\mathfrak{q}} / \hat{A}_{\mathfrak{p}}}=\mathcal{D}_{B / A} \hat{B}_{\mathfrak{q}} .
$$

Proof. We can assume without loss of generality that A is a DVR by localizing at \mathfrak{p}. Let $\hat{L}:=L \otimes \hat{K}$. By (5) of Theorem 11.20, we have $\hat{L}=\prod_{\mathfrak{q} \mid \mathfrak{p}} \hat{L}_{\mathfrak{q}}$. This is not a field, in general, but $\mathrm{T}_{\hat{L} / \hat{K}}$ is defined as for any ring extension, and we have $\mathrm{T}_{\hat{L} / \hat{K}}(x)=\sum_{\mathfrak{q} \mid \mathfrak{p}} \mathrm{T}_{\hat{L}_{\mathfrak{q}} / \hat{K}}(x)$.

Now let $\hat{B}:=B \otimes \hat{A}$. By Corollary $11.23, \hat{B}=\prod_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}}$, and therefore $\hat{B}^{*} \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}}^{*}$ (since the trace is just a sum of traces). It follows that $\hat{B}^{*} \simeq B^{*} \otimes_{A} \hat{A}$. Thus B^{*} generates the fractional ideal $\hat{B}_{\mathfrak{q}}^{*} \in \mathcal{I}_{\hat{B}_{\mathfrak{q}}}$. Taking inverses, $\mathcal{D}_{B / A}=\left(B^{*}\right)^{-1}$ generates $\left(\hat{B}_{\mathfrak{q}}^{*}\right)^{-1}=\mathcal{D}_{\hat{B}_{\mathfrak{q}} / \hat{A}}$.

12.2 The discriminant

Definition 12.5. Let S / R be a ring extension with S free as an R-module. For any $x_{1}, \ldots, x_{n} \in S$ we define the discriminant

$$
\operatorname{disc}\left(x_{1}, \ldots, x_{n}\right):=\operatorname{det}\left[\mathrm{T}_{S / R}\left(x_{i} x_{j}\right)\right]_{i, j} \in R .
$$

(note that the e_{1}, \ldots, e_{n} may be any elements of S, they need not be an R-basis).
In our $A K L B$ setup, we have in mind the case where $e_{1}, \ldots, e_{n} \in B$ is a basis for L as a K-vector space, in which case $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)=\operatorname{det}\left[\mathrm{T}_{L / K}\left(e_{i} e_{j}\right)\right]_{i j} \in A$. Note that we are not assuming B is a free A-module, but L is certainly a free K-module, so we can compute the discriminant of any set of elements of L (including elements of B).

Proposition 12.6. Let L / K be a finite separable extension of degree n, and let Ω / K be a field extension for which there are distinct $\sigma_{1}, \ldots, \sigma_{n} \in \operatorname{Hom}_{K}(L, \Omega)$. For any $e_{1}, \ldots, e_{n} \in L$

$$
\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)=\left(\operatorname{det}\left[\sigma_{i}\left(e_{j}\right)\right]_{i j}\right)^{2}
$$

and for any $x \in L$ we have

$$
\operatorname{disc}\left(1, x, x^{2}, \ldots, x^{n-1}\right)=\prod_{i<j}\left(\sigma_{i}(x)-\sigma_{j}(x)\right)^{2}
$$

Note that such an Ω exists, since L / K is separable (we can take a normal closure).
Proof. For $1 \leq i, j \leq n$ we have $\mathrm{T}_{L / K}\left(e_{i} e_{j}\right)=\sum_{k=1}^{n} \sigma_{k}\left(e_{i} e_{j}\right)$, by Theorem 4.46. Therefore

$$
\begin{aligned}
\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right) & =\operatorname{det}\left[\mathrm{T}_{L / K}\left(e_{i} e_{j}\right)\right]_{i j} \\
& =\operatorname{det}\left(\left[\sigma_{k}\left(e_{i}\right)\right]_{i k}\left[\sigma_{k}\left(e_{j}\right)\right]_{k j}\right) \\
& =\operatorname{det}\left(\left[\sigma_{k}\left(e_{i}\right)\right]_{i k}\left[\sigma_{k}\left(e_{j}\right)\right]_{j k}^{\mathrm{t}}\right) \\
& =\left(\operatorname{det}\left[\sigma_{i}\left(e_{j}\right)\right]_{i j}\right)^{2}
\end{aligned}
$$

since the determinant is multiplicative and and $\operatorname{det} M=\operatorname{det} M^{\mathrm{t}}$ for any matrix M.
Now let $x \in L$ and put $e_{i}:=x^{i-1}$ for $1 \leq i \leq n$. Then

$$
\operatorname{disc}\left(1, x, x^{2}, \ldots, x^{n-1}\right)=\left(\operatorname{det}\left[\sigma_{i}\left(x^{j-1}\right)\right]_{i j}\right)^{2}=\prod_{i<j}\left(\sigma_{i}(x)-\sigma_{j}(x)\right)^{2}
$$

since $\left.\left[\sigma_{i}(x)^{j-1}\right)\right]_{i j}$ is a Vandermonde matrix.
Definition 12.7. For a polynomial $f(x)=\prod_{i}\left(x-\alpha_{i}\right)$, the discriminant of f is

$$
\operatorname{disc}(f):=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Equivalently, if A is a Dedekind domain, $f \in A[x]$ is a monic separable polynomial, and α is the image of x in $A[x] /(f(x))$, then

$$
\operatorname{disc}(f)=\operatorname{disc}\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right) \in A
$$

Example 12.8. $\operatorname{disc}\left(x^{2}+b x+c\right)=b^{2}-4 c$ and $\operatorname{disc}\left(x^{3}+a x+b\right)=-4 a^{3}-27 b^{2}$.
Now assume $A K L B$ and let M be an A-lattice in L. Then M is a finitely generated A-module that contains a basis for L as a K-vector space, but we would like to define the discriminant of M in a way that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If $e_{1}, \ldots, e_{n} \in M \subseteq L$ and $e_{1}^{\prime}, \ldots, e_{n}^{\prime} \in M \subseteq L$ are two bases for M, then

$$
\operatorname{disc}\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=u^{2} \operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)
$$

for some unit $u \in A^{\times}$; this follows from the fact that the change of basis matrix $P \in A^{n \times n}$ is invertible and its determinant is therefore a unit u. This unit gets squared because we need to apply the change of basis twice in order to change $\mathrm{T}\left(e_{i} e_{j}\right)$ to $\mathrm{T}\left(e_{i}^{\prime} e_{j}^{\prime}\right)$. Explicitly, writing bases as row-vectors, let $e=\left(e_{1}, \ldots, e_{n}\right), e^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ with $e^{\prime}=e P$. Then

$$
\begin{aligned}
\operatorname{disc}\left(e^{\prime}\right) & =\operatorname{det}\left[\mathrm{T}_{L / K}\left(e_{i}^{\prime} e_{j}^{\prime}\right)\right]_{i j} \\
& =\operatorname{det}\left[\mathrm{T}_{L / K}\left((e P)_{i}(e P)_{j}\right)\right]_{i j} \\
& =\operatorname{det}\left[P^{\mathrm{t}} \mathrm{~T}_{L / K}\left(e_{i} e_{j}\right) P\right]_{i j} \\
& =\left(\operatorname{det} P^{\mathrm{t}}\right) \operatorname{disc}(e)(\operatorname{det} P) \\
& =(\operatorname{det} P)^{2} \operatorname{disc}(e),
\end{aligned}
$$

where we have used the fact that $\mathrm{T}_{L / K}$ is K-linear, the determinant is multiplicative, and $\operatorname{det} P^{\mathrm{t}}=\operatorname{det} P$.

This actually gives us an unambiguous definition when $A=\mathbb{Z}$: the only units in \mathbb{Z} are $u= \pm 1$, so we always have $u^{2}=1$ and discriminant of every basis is the same. In general we want to take the principal fractional ideal of A generated by $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)$, which does not depend on the choice of basis (multiplying a fractional ideal by a unit does nothing).

Definition 12.9. Assume $A K L B$ and let M be an A-lattice in L. The discriminant $D(M)$ of M is the A-submodule of K generated by $\left\{\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right): e_{1}, \ldots, e_{n} \in M\right\}$.

When M is free, $D(M)$ is the principal fractional ideal generated by $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)$, where $e:=e_{1}, \ldots, e_{n}$ is any A-basis for M. Given any n-tuple $e^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ of elements in M, if we view e and e^{\prime} as row vectors we can write $e^{\prime}=e P$ for some (not necessarily invertible) matrix $P \in A^{n \times n}$, and we always have $\operatorname{disc}\left(e^{\prime}\right)=(\operatorname{det} P)^{2} \operatorname{disc}(e) \in(\operatorname{disc}(e))$.

Lemma 12.10. Assume $A K L B$ and let $M^{\prime} \subseteq M$ be free A-lattices in L. If $D\left(M^{\prime}\right)=D(M)$ then $M^{\prime}=M$.

Proof. Fix A-bases e and e^{\prime} for M and M^{\prime}. Then $e^{\prime}=e P$ for some $P \in A^{n \times n}$, and we have

$$
\left.D\left(M^{\prime}\right)=\left(\operatorname{disc}\left(e^{\prime}\right)\right)=(\operatorname{disc}(e P))=\left((\operatorname{det} P)^{2}\right) \operatorname{disc}(e)\right)=(\operatorname{det} P)^{2} D(M),
$$

as fractional ideals of A. The fact that e is a basis for L and the trace pairing is nondegenerate guarantees that $\operatorname{disc}(e) \neq 0$. Now A is a Dedekind domain, so if $D\left(M^{\prime}\right)=D(M)$ then ($\operatorname{det} P$) must be the unit ideal (multiply both sides by $D(M)^{-1}$), and $\operatorname{det} P$ must be a unit, which implies P is invertible. We then have $e=e^{\prime} P^{-1}$, thus $M \subseteq M^{\prime}$ and $M^{\prime}=M$.

Proposition 12.11. Assume $A K L B$ and let M be an A-lattice in L. Then $D(M) \in \mathcal{I}_{A}$.
Proof. The A-module $D(M) \subseteq K$ is nonzero because M contains a K-basis $e=\left(e_{1}, \ldots, e_{n}\right)$ for L and $\operatorname{disc}(e) \neq 0$ because the trace pairing is nondegenerate. To show that $D(M)$ is a finitely generated as an A-module we use the usual trick: show that it is a submodule of a noetherian module. Let N be the free A-lattice in L generated by e. The A-lattice M is finitely generated, so we can pick a nonzero $a \in A$ such that $M \subseteq a^{-1} N$: write each generator for M in terms of the K-basis e and let a be the product of all the denominators that appear. We then have $D(M) \subseteq D\left(a^{-1} N\right)$, and since $a^{-1} N$ is a free A-lattice, $D\left(a^{-1} N\right)$ is a principal fractional ideal of A, hence a noetherian A-module (since A is noetherian), and this implies that the A-submodule $D(M)$ is finitely generated.

Definition 12.12. Assume $A K L B$. The discriminant of L / K is the discriminant of B as an A-module:

$$
D_{L / K}:=D_{B / A}:=D(B) \in \mathcal{I}_{A}
$$

Example 12.13. Consider the case $A=\mathbb{Z}, K=\mathbb{Q}, L=\mathbb{Q}(i), B=\mathbb{Z}[i]$. Then B is a free A-lattice with basis $(1, i)$ and we can compute $D_{L / K}$ in three ways:

- $\operatorname{disc}(1, i)=\operatorname{det}\left[\begin{array}{ll}\mathrm{T}_{L / K}(1 \cdot 1) & \mathrm{T}_{L / K}(1 \cdot i) \\ \mathrm{T}_{L / K}(i \cdot 1) & \mathrm{T}_{L / K}(i \cdot i)\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]=-4$.
- The non-trivial automorphism of L / K fixes 1 and sends i to $-i$, so we could instead compute $\operatorname{disc}(1, i)=\left(\operatorname{det}\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]\right)^{2}=(-2 i)^{2}=-4$.
- We have $B=\mathbb{Z}[i]=\mathbb{Z}[x] /\left(x^{2}+1\right)$ and can compute $\operatorname{disc}\left(x^{2}+1\right)=-4$.

In every case the discriminant ideal $D_{L / K}$ is $(-4)=(4)$.
Remark 12.14. If $A=\mathbb{Z}$ then B is the ring of integers of the number field L, and B is a free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In this situation it is customary to define the absolute discriminant D_{L} of the number field L to be the integer $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}$, for any basis $\left(e_{1}, \ldots, e_{n}\right)$ of B, rather than the ideal it generates. As noted above, this integer is independent of the choice of basis because $u^{2}=1$ for any $u \in \mathbb{Z}^{\times}$; in particular, the sign of D_{L} is well defined. In the example above, the absolute discriminant is $D_{L}=-4$ (not 4).

We now show that the discriminant respects localization.
Proposition 12.15. Assume $A K L B$ and let S be a multiplicative subset of A. Then $S^{-1} D_{B / A}=D_{S^{-1} B / S^{-1} A}$.
Proof. Let $x=s^{-1} \operatorname{disc}\left(e_{1}, \ldots, e_{n}\right) \in S^{-1} D_{B / A}$ for some $s \in S$ and $e_{1}, \ldots, e_{n} \in B$. Then $x=s^{2 n-1} \operatorname{disc}\left(s^{-1} e_{1}, \ldots, s^{-1} e_{n}\right)$ lies in $D_{S^{-1} B / S^{-1} A}$. This proves the forward inclusion.

Conversely, for any $e_{1}, \ldots, e_{n} \in S^{-1} B$ we can choose a single $s \in S \subseteq A$ so that each $s e_{i}$ lies in B. We then have $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)=s^{-2 n} \operatorname{disc}\left(s e_{1}, \ldots, s e_{n}\right) \in S^{-1} D_{B / A}$, which proves the reverse inclusion.

We have now defined two different ideals associated to a finite separable extension of Dedekind domains B / A in the $A K L B$ setup. We have the different $\mathcal{D}_{B / A}$, which is a fractional ideal of B, and the discriminant $D_{B / A}$, which is a fractional ideal of A. We now relate these two ideals in terms of the ideal norm $N_{B / A}: \mathcal{I}_{B} \rightarrow \mathcal{I}_{A}$, which for $I \in \mathcal{I}_{B}$ is defined as $N_{B / A}(I):=(B: I)_{A}$, where $(B: I)_{A}$ is the module index (see Definitions $\underline{6.1}$ and 6.4). We recall that $N_{B / A}(I)$ is also equal to the ideal generated by the image of I under the field norm $\mathrm{N}_{L / K}$; see Corollary 6.8.

Theorem 12.16. Assume $A K L B$. Then $D_{B / A}=N_{B / A}\left(\mathcal{D}_{B / A}\right)$.
Proof. The different and discriminant are both compatible with localization, by Propositions $\underline{12.3}$ and $\underline{12.15}$, and the fractional ideals $D_{B / A}$ and $N_{B / A}\left(\mathcal{D}_{B / A}\right)$ of A are both determined by the intersections of their localizations at prime ideals (Proposition 2.7), so it suffices to prove that the theorem holds when $A=A_{\mathfrak{p}}$ is a DVR, and in particular a PID (here we are using the fact that A is a Dedekind domain). In this case B is a free A-lattice in L, and we can choose a basis $\left(e_{1}, \ldots, e_{n}\right)$ for B as an A-module. The dual A-lattice

$$
B^{*}=\left\{x \in L: \mathrm{T}_{L / K}(x b) \in A \forall b \in B\right\} \in \mathcal{I}_{B}
$$

is also a free A-module, with basis $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ uniquely determined by $\mathrm{T}_{L / K}\left(e_{i}^{*} e_{j}\right)=\delta_{i j}$. If we write $e_{i}=\sum a_{i j} e_{j}^{*}$ in terms of the K-basis $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ for L then

$$
T_{L / K}\left(e_{i} e_{j}\right)=T_{L / K}\left(\sum_{k} a_{i k} e_{k}^{*} e_{j}\right)=\sum_{k} a_{i k} T_{L / K}\left(e_{k}^{*} e_{j}\right)=\sum_{k} a_{i k} \delta_{k j}=a_{i j},
$$

so $P:=\left[\mathrm{T}_{L / K}\left(e_{i} e_{j}\right)\right]_{i j}$ is the change-of-basis matrix from $e^{*}:=\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ to $e:=\left(e_{1}, \ldots, e_{n}\right)$ (as row vectors we have $e=e^{*} P$). If we let $\phi: B^{*} \rightarrow B$ denote the linear transformation with matrix P, then ϕ is an isomorphism of free A-modules and

$$
D_{B / A}=\left(\operatorname{det}\left[\mathrm{T}_{L / K}\left(e_{i} e_{j}\right)\right]_{i j}\right)=(\operatorname{det} \phi)=\left[B^{*}: B\right]_{A},
$$

where $\left[B^{*}: B\right]_{A}$ is the module index (see Definition 6.1). Applying Corollary $\underline{6.7}$ yields

$$
D_{B / A}=\left[B^{*}: B\right]_{A}=N_{B / A}\left(\left(B^{*}\right)^{-1} B\right)=N_{B / A}\left(\left(B^{*}\right)^{-1}\right)=N_{B / A}\left(\mathcal{D}_{B / A}\right)
$$

Corollary 12.17. Assume $A K L B$. The discriminant $D_{B / A}$ is an A-ideal.
Proof. The different $\mathcal{D}_{B / A}$ is a B-ideal, and the field norm $N_{L / K}$ sends elements of B to A; it follows that $D_{B / A}=N_{B / A}\left(\mathcal{D}_{B / A}\right)=\left(\left\{N_{L / K}(x): x \in \mathcal{D}_{B / A}\right\}\right)$ is an A-ideal.

12.3 Ramification

Having defined the different and discriminant ideals we now consider what they can tell us about ramification. Recall that in our $A K L B$ setup, if \mathfrak{p} is a prime of A with

$$
\mathfrak{p} B=\prod \mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{r}^{e_{r}},
$$

each prime \mathfrak{q}_{i} is unramified if and only if $e_{i}=1$ and the residue field B / \mathfrak{q}_{i} is a separable extension of A / \mathfrak{p}, and \mathfrak{p} is unramified if and only if all the \mathfrak{q}_{i} are unramified. As noted in Definition 5.33, an equivalent definition is that $B / \mathfrak{p} B$ is a finite étale A / \mathfrak{p}-algebra (a finite product of finite separable extensions of A / \mathfrak{p}). To see this, note that the Chinese remainder theorem implies

$$
B / \mathfrak{p} B \simeq B / \mathfrak{q}_{1}^{e_{1}} \times \cdots \times B / \mathfrak{q}_{r}^{e_{r}},
$$

and if any $e_{i}>1$ then $B / \mathfrak{p} B$ contains a nonzero nilpotent element (take a uniformizer for \mathfrak{q}_{i}). In this case $B / \mathfrak{p} B$ cannot be étale, since a product of fields has no nonzero nilpotents. If every $e_{i}=1$, then $B / \mathfrak{p} B$ is isomorphic to the product of the residue fields B / \mathfrak{q}_{i}, each of which is a finite extension of A / \mathfrak{p}. In this case $B / \mathfrak{p} B$ is étale if and only if these extensions are all separable, equivalently, if and only if all the \mathfrak{q}_{i} are unramified.

We now relate the property of being finite étale to the discriminant.
Lemma 12.18. Let k be a field and let R be a commutative k-algebra that is a finite dimensional k-vector space with basis r_{1}, \ldots, r_{n}. Then R is a finite étale k-algebra if and only if $\operatorname{disc}\left(r_{1}, \ldots, r_{n}\right)=\operatorname{det}\left[\mathrm{T}_{R / k}\left(r_{i} r_{j}\right)\right]_{i j} \neq 0$.

Proof. We first note that the choice of basis is immaterial, changing the basis will not change whether the discriminant is zero or nonzero.

Suppose R contains a nonzero nilpotent r (so $r^{m}=0$ for some $m>1$). In this case R cannot be finite étale, and we can extend $\{r\}$ to a basis, so we may assume $r_{1}=r$ is nilpotent. Every multiple of r_{1} is also nilpotent, and it follows that the first row of the matrix [$\left.\mathrm{T}_{R / k}\left(r_{i} r_{j}\right)\right]_{i j}$ is zero, since the trace of any nilpotent element s is zero (the eigenvalues of the multiplication-by- s map must all be zero). Therefore $\operatorname{disc}\left(r_{1}, \ldots, r_{n}\right) \operatorname{det}\left[\mathrm{T}_{R / k}\left(r_{i} r_{j}\right)\right]_{i j}=0$.

Suppose R contains no nonzero nilpotents. Then R is isomorphic to a product of fields, each of which is a finite extension of k (this is a standard result of commutative algebra which follows, for example, from Lemmas 10.52.2-5 of [3]). Without loss of generality we can assume our basis contains k-bases for each of these field extensions, grouped together so that the matrix $\left[\mathrm{T}_{R / k}\left(r_{i} r_{j}\right)\right]_{i j}$ is block diagonal. The determinant is then nonzero if and only if the determinant of each block is nonzero, so we can reduce to the case where R / k is a field extension. The proof then follows from the fact that the trace pairing $\mathrm{T}_{R / k}$ is nondegenerate if and only if R / k is separable (see Proposition 5.18).

Theorem 12.19. Assume $A K L B$, let \mathfrak{q} be a prime of B lying above a prime \mathfrak{p} of A. The extension L / K is unramified at \mathfrak{q} if and only if \mathfrak{q} does not divide $\mathcal{D}_{B / A}$, and it is unramified at \mathfrak{p} if and only if \mathfrak{p} does not divide $D_{B / A}$.

Proof. We first consider the different ideal $\mathcal{D}_{B / A}$. By Proposition 12.4, the different is compatible with completion, so it suffices to consider the case that A and B are complete DVRs (complete K at \mathfrak{p} and L at \mathfrak{q} and apply Theorem 11.20). We then have $[L: K]=e_{\mathfrak{q}} f_{\mathfrak{q}}$, where $e_{\mathfrak{q}}$ is the ramification index and $f_{\mathfrak{q}}$ is the residue field degree, and $\mathfrak{p} B=\mathfrak{q}^{e_{\mathfrak{q}}}$.

Since B is a DVR with maximal ideal \mathfrak{q}, we must have $\mathcal{D}_{B / A}=\mathfrak{q}^{m}$ for some $m \geq 0$. By Theorem 12.16 we have

$$
D_{B / A}=N_{B / A}\left(\mathcal{D}_{B / A}\right)=N_{B / A}\left(\mathfrak{q}^{m}\right)=\mathfrak{p}^{f_{\mathfrak{q}} m} .
$$

Thus $\mathfrak{q} \mid \mathcal{D}_{B / A}$ if and only if $\mathfrak{p} \mid D_{B / A}$. Since A is a PID, B is a free A-module and we may choose an A-module basis e_{1}, \ldots, e_{n} for B that is also a K-vector space for L. Let $k:=A / \mathfrak{p}$, and let \bar{e}_{i} be the reduction of e_{i} to the k-algebra $R:=B / \mathfrak{p} B$. Then $\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ is a k-basis for R : it clearly spans, and we have $[R: k]=\left[B / \mathfrak{q}^{e_{\mathfrak{q}}}: A_{\mathfrak{p}}\right]=e_{\mathfrak{q}} f_{\mathfrak{q}}=[L: K]=n$.

Since B has an A-module basis, we may compute its discriminant as

$$
D_{B / A}=\left(\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)\right) .
$$

Thus $\mathfrak{p} \mid D_{B / a}$ if and only if $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right) \in \mathfrak{p}$, equivalently, $\operatorname{disc}\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)=0$ (note that $\operatorname{disc}\left(e_{1}, \ldots, e_{n}\right)$ is a polynomial in the $\mathrm{T}_{L / K}\left(e_{i} e_{j}\right)$ and $T_{R / k}\left(\bar{e}_{i} \bar{e}_{j}\right)$ is the trace of the multiplication-by- $\bar{e}_{i} \bar{e}_{j}$ map, which is the same as the reduction to $k=A / \mathfrak{p}$ of the trace of the multiplication-by- $e_{i} e_{j}$ map $\left.T_{L / K}\left(e_{i} e_{j}\right) \in A\right)$. By Lemma $12.18, \operatorname{disc}\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)=0$ if and only if the k-algebra $B / \mathfrak{p} B$ is not finite étale, equivalently, if and only if \mathfrak{p} is ramified. Thus $\mathfrak{p} \mid D_{B / A}$ if and only if \mathfrak{p} is ramified. There is only one prime \mathfrak{q} above \mathfrak{p}, so we also have $\mathfrak{q} \mid \mathcal{D}_{B / A}$ if and only if \mathfrak{q} is ramified.

We now note an important corollary of Theorem 12.19.
Corollary 12.20. Assume $A K L B$. Only finitely many primes of A (or B) ramify.
Proof. Both A and B are Dedekind domains, so the ideals $D_{B / A}$ and $\mathcal{D}_{B / A}$ both have unique factorizations into prime ideals in which only finitely many primes appear.

12.4 The discriminant of an order

Recall from Lecture 6 that an order \mathcal{O} is a noetherian domain of dimension one whose conductor is nonzero (see Definitions 6.15 and 6.18), and the integral closure of an order is always a Dedekind domain. In our $\overline{A K L B}$ setup, the orders with integral closure B are precisely the A-lattices in L that are rings (see Proposition 6.21); if $L=K(\alpha)$ with $\alpha \in B$ then $A[\alpha]$ is an example. The discriminant $D_{\mathcal{O} / A}$ of such an order \mathcal{O} is its discriminant $D(\mathcal{O})$ as an A-module. The fact that $\mathcal{O} \subseteq B$ implies that $D(\mathcal{O}) \subseteq D_{B / A}$ is an A-ideal.

If \mathcal{O} is an order of the form $A[\alpha]$, where $\alpha \in B$ generates $L=K(\alpha)$ with minimal polynomial $f \in A[x]$, then \mathcal{O} is a free A-lattice with basis $1, \alpha, \ldots, \alpha^{n-1}$, where $n=\operatorname{deg} f$, and we may compute its discriminant as

$$
D_{\mathcal{O} / A}=\left(\operatorname{disc}\left(1, \alpha, \ldots, \alpha^{n-1}\right)\right)=(\operatorname{disc}(f)),
$$

which is a principal A-ideal contained in $D_{B / A}$. If B is also a free A-lattice, then as in the proof of Lemma 12.10 we have

$$
D_{\mathcal{O} / A}=(\operatorname{det} P)^{2} D_{B / A}=[B: \mathcal{O}]_{A}^{2} D_{B / A},
$$

where P is the matrix of the A-linear map $\phi: B \rightarrow \mathcal{O}$ that sends an A-basis for B to an A-basis for \mathcal{O} and $[B: \mathcal{O}]_{A}$ is the module index (a principal A-ideal).

In the important special case where $A=\mathbb{Z}$ and L is a number field, the integer $(\operatorname{det} P)^{2}$ is uniquely determined and it necessarily divides $\operatorname{disc}(f)$, the generator of the principal ideal $D(\mathcal{O})=D(A[\alpha])$. It follows that if $\operatorname{disc}(f)$ is squarefree then we must have $B=\mathcal{O}=A[\alpha]$. More generally, any prime p for which $v_{p}(\operatorname{disc}(f))$ is odd must be ramified, and any prime that does not divide $\operatorname{disc}(f)$ must be unramified.

Another useful observation that applies when $A=\mathbb{Z}$ is that in this case the module index $[B: \mathcal{O}]_{\mathbb{Z}}=([B: \mathcal{O}])$ is the principal ideal generated by the index of \mathcal{O} in B (as \mathbb{Z}-lattices), and we have

$$
D_{\mathcal{O} / A}=[B: \mathcal{O}]^{2} D_{B / A} .
$$

Example 12.21. Consider $A=\mathbb{Z}, K=\mathbb{Q}$ with $L=\mathbb{Q}(\alpha)$, where $\alpha^{3}-\alpha-1=0$. We would like to determine the primes that ramify in L and describe its ring of integers $B=\mathcal{O}_{L}$. We can compute the absolute discriminant of $\mathbb{Z}[\alpha]$ as

$$
\operatorname{disc}\left(1, \alpha, \alpha^{2}\right)=\operatorname{disc}\left(x^{3}-x-1\right)=-4(-1)^{3}-27(-1)^{2}=-23 .
$$

This immediately implies that 23 is the only prime of that ramifies. The \mathbb{Z}-ideal $D(\mathbb{Z}[\alpha])$ is principal (because \mathbb{Z} is a PID) and therefore must be generated by the integer $-23 / \mathrm{m}^{2}$, where $m=\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right]$; this implies $m=1$, so $\mathcal{O}_{L}=\mathbb{Z}[\alpha]$.

More generally, we have the following theorem.
Theorem 12.22. Assume $A K L B$ and let \mathcal{O} be an order with integral closure B and conductor \mathfrak{c}. Then $D_{\mathcal{O} / A}=\mathrm{N}_{B / A}(\mathfrak{c}) D_{B / A}$.

Proof. See Problem Set 6.

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant and different in many cases.

Proposition 12.23. Assume $A K L B$. If $B=A[\alpha]$ for some $\alpha \in L$ and $f \in A[x]$ is the minimal polynomial of α, then

$$
\mathcal{D}_{B / A}=\left(f^{\prime}(\alpha)\right)
$$

is the B-ideal generated by $f^{\prime}(\alpha)$.
Proof. See Problem Set 6.
The assumption $B=A[\alpha]$ in Proposition 12.23 does not always hold, but if we want to compute the power of \mathfrak{q} that divides $\mathcal{D}_{B / A}$ we can complete L at \mathfrak{q} and K at $\mathfrak{p}=\mathfrak{q} \cap A$ so that A and B become complete DVRs, in which case $B=A[\alpha]$ does hold (by Lemma 10.15), so long as the residue field extension is separable (always true if K and L are global fields, since the residue fields are then finite, hence perfect). The following definition and proposition give an alternative approach.

Definition 12.24. Assume $A K L B$ and let $\alpha \in B$ have minimal polynomial $f \in A[x]$. The different of α is defined by

$$
\delta_{B / A}(\alpha)= \begin{cases}f^{\prime}(\alpha) & \text { if } L=K(\alpha) \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 12.25. Assume $A K L B$. Then $\mathcal{D}_{B / A}=\left(\delta_{B / A}(\alpha): \alpha \in B\right)$.
Proof. See [1, Thm. III.2.5].
We can now more precisely characterize the ramification information given by the different ideal.

Theorem 12.26. Assume $A K L B$ and let \mathfrak{q} be a prime of L lying above $\mathfrak{p}=\mathfrak{q} \cap A$ for which the residue field extension $(B / \mathfrak{q}) /(A / \mathfrak{p})$ is separable. Let $s=v_{\mathfrak{q}}\left(\mathcal{D}_{B / A}\right)$, let $e=e_{\mathfrak{q}}$ be the ramification index of \mathfrak{q} over \mathfrak{p}, and let p be the characteristic of A / \mathfrak{p}. If $p \nmid e$ then

$$
s=e-1
$$

and if $p \mid e$ then

$$
e \leq s \leq e-1+e v_{\mathfrak{p}}(e)
$$

Proof. See Problem Set 6.
We also note the following proposition, which shows how the discriminant and different behave in a tower of extensions.

Proposition 12.27. Assume $A K L B$ and let M / L be a finite separable extension and let C be the integral closure of A in M. Then

$$
\mathcal{D}_{C / A}=\mathcal{D}_{C / B} \cdot \mathcal{D}_{B / A}
$$

(where the product on the right is taken in C), and

$$
D_{C / A}=\left(D_{B / A}\right)^{[M: L]} N_{B / A}\left(D_{C / B}\right) .
$$

Proof. See [2, Prop. III.8].
If $M / L / K$ is a tower of finite separable extensions, we note that the primes \mathfrak{p} of K that ramify are precisely those that divide either $D_{L / K}$ or $N_{L / K}\left(D_{M / L}\right)$.

References

[1] J. Neukirch, Algebraic number theory, Springer, 1999.
[2] J.-P. Serre, Local fields, Springer, 1979.
[3] Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ As usual, by a prime of A or K (resp., B or L) we mean a nonzero prime ideal of A (resp., B). In our $A K L B$ setting the notation $\mathfrak{q} \mid \mathfrak{p}$ means that \mathfrak{q} is a prime of B lying above \mathfrak{p} (so $\mathfrak{p}=\mathfrak{q} \cap A$ and \mathfrak{q} divides $\mathfrak{p} B$).

