
18.785 Number theory I Fall 2016
Lecture #10 10/13/2016

10 Extensions of complete DVRs

We now return to our AKLB setup, where A is a Dedekind domain with fraction field K,
the field L is a finite separable extension of K, and B is the integral closure of A in L (which
makes B a Dedekind domain with fraction field L). Recall that be a prime of A, we mean
a nonzero prime ideal, equivalently, a maximal ideal, and similarly for B.

Theorem 10.1. Assume AKLB and that A is a complete DVR with maximal ideal p.
Then there is a unique prime q of B lying above p.

Proof. Existence is clear (the factorization of pB in the Dedekind domain B is not trivial
because pB 6= B). To prove uniqueness we use the generalized form of Hensel’s lemma.
Suppose q1, q2|p with q1 6= q2. Choose b ∈ q1 − q2 and consider the ring A[b] ⊆ B. Then
q1 ∩A[b] and q2 ∩A[b] are distinct primes of A[b] lying above p. So A[b]/pA[b] has at least
two nonzero prime ideals and is not a field.

Let F ∈ A[x] be the minimal polynomial of b over K and, and let f ∈ k[a] be its
reduction to the residue field k := A/p. Then

k[x]

(f)
' A[x] A[b]

(p, F )
' ,

pA[b]

so the ring k[x]/(f) is not a field. Therefore f is not irreducible and we can write f = gh for
some nonconstant coprime g, h ∈ k[x]. By the generalization of Hensel’s lemma, F = GH
has a nontrivial factorization in A[x], which is a contradiction.

Corollary 10.2. Assume AKLB and that A is a complete DVR. Then B is a DVR.

Proof. Every maximal ideal of B must lie above the unique maximal ideal of A, so Theo-
rem 10.1 implies that B has a unique maximal ideal and is therefore a local Dedekind do-
main, hence a DVR (a semi-local Dedekind domain is a PID and a local PID is a DVR).

Remark 10.3. The assumption that A is complete is necessary. For example, if A is the
DVR Z(5) with fraction field K = Q and we take L = Q(i), then the integral closure of A
in L is B = Z(5)[i], which is a PID but not a DVR: the ideals (1 + 2i) and (1 − 2i) are
both maximal (and not equal). But notice that if we take completions we get A = Z5 and
K = Q5, and now L = Q 2

5(i) = Q5 = K, since x + 1 has a root in F5 ' Z5/5Z5 that we
can lift to Z5 via Hensel’s lemma; in this case B = A is a DVR as required.

Definition 10.4. Let K be a field with absolute value | | and let V be a K-vector space.
A norm on V is a function ‖ ‖ : V → R≥0 such that

• ‖v‖ = 0 if and only if v = 0.

• ‖λv‖ = |λ| ‖v‖ for all λ ∈ K and v ∈ V .

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Each norm ‖ ‖ induces a topology on V via the distance metric d(v, w) := ‖x− y‖.

Example 10.5. Let V be a K-vector space with basis (ei), and for v ∈ V let vi ∈ K denote
the coefficient of ei in v =

∑
i viei. The sup-norm ‖v‖ := sup v is a norm on V (thus∞ {| i|}

every vector space has a norm). If V is also a K-algebra (e.g. a field extension), an absolute
value ‖ ‖ on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends
the absolute value on K (fix v 6= 0 and note that ‖λ‖ ‖v‖ = ‖λv‖ = |λ| ‖v‖ ⇔ ‖λ‖ = |λ|).
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Proposition 10.6. Let V be a vector space of finite dimension over a complete field K.
Every norm on V induces the same topology, in which V a complete metric space.

Proof. See Problem Set 5.

Theorem 10.7. Let A be a complete DVR with maximal ideal p, discrete valuation vp, and
absolute value |x|p := cvp(x) with 0 < c < 1. Let L/K be a finite extension of degree n. Then

| | | |1/nx := NL/K(x) p

is the unique absolute value on L extending | |p, L is complete with respect to | |, and its
valuation ring {x ∈ L : |x| ≤ 1} is equal to the integral closure B of A in L.

If L/K is separable then B is a complete DVR with unique maximal ideal q|p whose
valuation vq extends vp with index eq, and | | is equal to the absolute value

1

|x|q := c
vq(x)

eq ,

induced by vq.

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!),
for any x ∈ K we have

|x| = | 1/n 1/n
NL/K(x)| = |xnp |p = |x|p,

so | | extends | |p and is therefore a norm on L. The fact that | |p is nontrivial means that
|x|p 6= 1 for some x ∈ K×, and |x|a = |x|p = |x| only for a = 1, which implies that | |
is the unique absolute value in its equivalence class extending | |p. Inequivalent absolute
values on L induce distinct topologies while every norm on L induces the same topology
(by Theorem 10.7), so | | is the unique absolute value on L that extends | |p.

We now show | | is an absolute value. Clearly |x| = 0 if and only if x = 0, and | | is
multiplicative; we only need to check the triangle inequality. For this it is enough to show
that |x + 1| ≤ |x| + 1 whenever |x| ≤ 1, since we always have |y + z| = |z||y/z + 1| and
|y|+ |z| = |z|(|y/z|+ 1), and may assume without loss of generality that |y| ≤ |z|. We have

|x| ≤ 1 ⇐⇒ |NL/K(x)|p ≤ 1 ⇐⇒ NL/K(x) ∈ A ⇐⇒ x ∈ B,

where the first biconditional follows from the definition of | |, the second follows from the
definition of | |p, and the third is Corollary 9.22. We now note that x ∈ B if and only if
x+ 1 ∈ B, so |x| ≤ 1 if and only if |x+ 1| ≤ 1, thus for |x| ≤ 1 we have |x+ 1| ≤ 1 ≤ |x|+ 1,
as desired. This also shows that B is the valuation ring {x ∈ L : |x| ≤ 1} of L as claimed.

We now assume L/K is separable. Then B is a DVR, by Corollary 10.2, and it is
complete because it is the valuation ring of L. Let q be the unique maximal ideal of B.
The valuation vq extends vp with index eq, by Theorem 9.2 so vq(x) = eqvp(x) for x ∈ K×.
We have 0 < c1/eq < 1, so |x|q := (c1/eq)vq(x) is an absolute value on L induced by vq. To
show it is equal to | |, it suffices to show that it extends | |p, since we already know that | |
is the unique absolute value on L with this property. For x ∈ K× we have

1

|x|q = c eq
vq(x)

= c
1 eqvp(x)
eq = cvp(x) = |x|p,

and the theorem follows.
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Remark 10.8. The transitivity of NL/K in towers (Corollary 4.48) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value on its fraction field K can be uniquely extended to K; see [4, Theorem 6.6].

Corollary 10.9. Assume AKLB and that A is a complete DVR with maximal ideal p and
let q|p. Then v (x) = 1

q vp(NL/K(x)) for all xfq
∈ L.

Proof. vp(NL/K(x)) = vp(NL/K((x))) = vp(NL/K(qvq(x))) = vp(p
fqvq(x)) = fqvq(x).

Remark 10.10. One can generalize the notion of a discrete valuation to a valuation which
is surjective homomorphism v : K× → Γ, where Γ is a (totally) ordered abelian group and
v(x + y) ≤ min(v(x), v(y)); we extend v to K by defining v(0) = ∞ to be strictly greater
than any element of Γ. In the AKLB setup with A a complete DVR, one can then define
a valuation v(x) = 1

eq
vq(x) with image 1

eq
Z that restricts to the discrete valuation vp on K.

The valuation v then extends to a valuation on K with Γ = Q. Some texts take this
approach, but we will generally stick with discrete valuations (so our absolute value on L
restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K,
they extend them with index eq). You will have an opportunity to explore more valuations
in a more general context on Problem Set 6.

Remark 10.11. In general one defines a valuation ring to be an integral domain A with
fraction field K such that for every x ∈ K× either x ∈ A or x−1 ∈ A (possibly both). One
can show that this implies the existence of a valuation v : K → Γ ∪ {∞} for some Γ.

In our AKLB setup, if A is a complete DVR with maximal ideal p then B is a complete
DVR with maximal ideal q|p and the formula [L : K] =

∑
p y|q eqfq given b Theorem 5.31

consists of the single term eqfq. We now simplify matters even further by reducing to the
two extreme cases fq = 1 (a totally ramified extension) and eq = 1 (an unramified extension,
provided that the residue field extension is separable).1

10.1 A local version of the Dedekind-Kummer theorem

To facilitate our investigation of extensions of complete DVRs we first prove a local version of
the Dedekind-Kummer theorem (Theorem 6.13); we could adapt our proof of the Dedekind-
Kummer theorem but it is actually easier to just prove this directly. Working with a DVR
rather than an arbitrary Dedekind domain simplifies matters considerably; in particular, in
the AKLB setup, when A is a complete DVR and the residue field extension is separable,
the extension L/K is guaranteed to be monogenic (so B = A[α] for some α ∈ B).

We first recall Nakayama’s lemma, a very useful result from commutative algebra that
comes in a variety of forms. The one most directly applicable to our needs is the following.

Lemma 10.12 (Nakayama’s lemma). Let A be a local ring with maximal ideal p and residue
field k = A/p, and let M be a finitely generated A-module. If the images of x1, . . . , xn ∈M
generate M/pM as an k-vector space then x1, . . . , xn generate M as an A-module.

1Recall from Definition 5.33 that separability of the residue field extension is part of the definition of an
unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field
extension is automatically separable, but in general need not be.
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Proof. See [1, Corollary 4.8b].

Lemma 10.13. Let A be a DVR with maximal ideal p and residue field k := A/p, and let
B := A[x]/(g(x)) for some polynomial g ∈ A[x]. Every maximal ideal m of B contains p.

Proof. Suppose not. Then m+pB = B for some maximal ideal m of B. The ring B is finitely
generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules
are all finitely generated. Let z1, . . . , zn be A-module generators for m. Every coset of
pB in B can be written as z + pB for some A-linear combination z of z1, . . . , zn, so the
images of z1, . . . , zn generate B/pB as an k-vector space. By Nakayama’s lemma, z1, . . . , zn
generate B, which implies m = B, a contradiction.

Corollary 10.14. Let A be a DVR with maximal ideal p and residue field k := A/p, let
g ∈ A[x] be a polynomial, and let α be the image of x in B := A[x]/(g(x)) = A[α]. The
maximal ideals of B are (p, hi(α)), where h1, . . . , hm ∈ k[x] are the irreducible polynomials
appearing in the factorization of g modulo p.

Proof. Lemma 10.13 gives us a one-to-one correspondence between the maximal ideals of B
and the maximal ideals of

B

pB
' A[x]

(p, g(x))
' k[x]

,
(ḡ(x))

where ḡ denotes the reduction of g modulo p. Each maximal ideal of k[x]/(ḡ(x)) is generated
by the image of one of the hi(x) (the quotients of the ring k[x]/(ḡ(x)) that are fields are
precisely those isomorphic to k[x]/(h(x)) for some irreducible h ∈ k[x] dividing ḡ). It follows
that the maximal ideals of B = A[α] are precisely the ideals (p, hi(α)).

We now show that when B is a DVR (always true if A is a complete DVR) and the
residue field extension is separable, we can always write B = A[α] as required in the corollary
(so our local version of the Dedekind-Kummer theorem is always applicable when L and K
are local fields, for example).

Theorem 10.15. Assume AKLB, with A and B DVRs with residue fields k := A/p and
l := B/q. If l/k is separable then B = A[α] for some α ∈ B; if L/K is unramified this
holds for any α ∈ B whose image generates the residue field extension l/k.

Proof. Let pB = qe be the factorization of pB, with ramification index e, and let f = [l : k]
be the residue field degree, so that ef = n := [L : K]. The extension l/k is separable,
so we may apply the primitive element theorem to write l = k(α0) for some αi ∈ l whose
minimal polynomial ḡ is separable of degree f (so ḡ(ᾱ0) = 0 and ḡ′(ᾱ0) 6= 0). Let α0 be
any lift of ᾱ0 to B, and let g ∈ A[x] be a monic lift of ḡ chosen so that vq(g(α0)) > 1 and
vq(g

′(α0)) = 0. This is possible since g(α0) ≡ ḡ(ᾱ0) = 0 mod q, so vq(g(α0)) ≥ 1 and if
equality holds we can replace g by g − g(α0) without changing g′(α0) ≡ ḡ′(ᾱ0) 6≡ 0 mod q.
Now let π0 be any uniformizer for B and let α := α0 + π0 ∈ B (so α ≡ ᾱ0 mod q) Writing
g(x+ π0) = g(x) + π0g

′(x) + π2
0h(x) for some h ∈ A[x] via Lemma 9.12, we have

vq(g(α)) = vq(g(α0 + π0)) = vq(g(α 2
0) + π0g

′(α0) + π0h(α0)) = 1,

so π := g(α) is also a uniformizer for B.
We now claim B = A[α], equivalently, that 1, α, . . . , αn−1 generate B as an A-module.

By Nakayama’s lemma, it suffices to show that the reductions of 1, α, . . . , αn−1 span B/pB
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as an k-vector space. We have p = qe, so pB = (πe). We can represent each element of
B/pB as a coset

b+ pB = b0 + b1π + b2π · · ·+ b 1
e 1π

e− + pB,−

where b0, . . . , be 1 are determined up to equivalence modulo πB. Now 1, ᾱ, . . . , ᾱf−1 are a−
basis for B/πB = B/q as a k-vector space, and π = g(α), so we can rewrite this as

b+ pB =(a0 + a1α+ · · · a f 1
f−1α

− ) +

(af + af+1α+ · · · a f 1
2f 1α

− )g(α) +−

· · ·+
(aef−f+1 + a f 1 e 1

ef−f+2α+ · · · aef α − )g(α) − + pB.−1

Since deg g = f , and n = ef , this expresses b+pB in the form b′+pB with b′ in the A-span
of 1, . . . , αn−1. Thus B = A[α]. We now note that if L/K is unramified then e = 1 and
f = n, in which case there is no need to require g(α) to be a uniformizer and we can just
take α = α0 to be any lift of any ᾱ0 that generates l over k.

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite
unramified extension of L/K of degree n is a corresponding finite separable extension of
residue fields l/k of the same degree n. Given that the extensions L/K and l/k are finite
separable extensions of the same degree, we might then ask how they are related. More
precisely, if we fix K with residue field k, what is the relationship between finite unramified
extensions L/K of degree n and finite separable extensions l/k of degree n? Each L/K
uniquely determines a corresponding l/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K
form a category CK whose morphisms are K-algebra homomorphisms, and the finite sepa-
rable extensions l of k form a category Ck whose morphisms are k-algebra homomorphisms.
These two categories are equivalent.

Theorem 10.16. Let A be a complete DVR with fraction field K and residue field k := A/p.
The categories of finite unramified extensions L/K and finite separable extensions l/k are
equivalent via the functor F that sends each L to its residue field l and each K-algebra
homomorphism ϕ : L1 → L2 to the induced k-algebra homomorphism ϕ̄ : l1 → l2 of residue
fields defined by ϕ̄(ᾱ) := ϕ(α), where α denotes any lift of ᾱ ∈ l1 := B1/q1 to B1 and ϕ(α)
is the reduction of ϕ(α) ∈ B2 to l2 := B2/q2.

In particular, F defines a bijection between the isomorphism classes of objects in each
category, and if L1 and L2 and have residue fields l1 and l2 then F gives a bijection

HomK(L1, L2) −∼→ Homk(l1, l2).

Proof. Let us first verify that F is well-defined. It is clear that it maps finite unramified
extensions L/K to finite separable extension l/k, but we should check that the map on
morphisms actually makes sense, i.e. that it does not depend on the lift α of ᾱ we pick.
So let ϕ : L1 → L2 be a K-algebra homomorphism, and for ᾱ ∈ l1, let α and β be two
lifts of ᾱ to B1. Then α − β ∈ q1, and this implies that ϕ(α − β) ∈ ϕ(q1) ⊆ q2, and
therefore ϕ(α) = ϕ(β). The inclusion ϕ(q1) ⊆ q2 follows from the fact that the K-algebra
homomorphism ϕ is necessarily injective (it is a homomorphism of fields) and preserves
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integrality over A, since it fixes every polynomial in A[x]. Thus ϕ injects B1 to a subring
of B2, and since both are DVRs the maximal ideal ϕ(q1) of ϕ(B1) must be equal to q2∩ϕ(q1)
and lie in q2. It’s easy to see that F sends identity morphisms to identity morphisms and
that it is compatible with composition, so we have a well-defined functor.

To show that F is an equivalence of categories we need to prove two things:

• F is essentially surjective: every l is isomorphic to the residue field of some L.

• F is full and faithful: the induced map HomK(L1, L2)→ Homk(l1, l2) is a bijection.

We first show that F is essentially surjective. Given a finite separable extension l/k, we
may apply the primitive element theorem to write

k[x]
l ' k(ᾱ) = ,

(ḡ(x))

for some ᾱ ∈ l whose minimal polynomial ḡ ∈ k[x] is necessarily monic, irreducible, separa-
ble, and of degree n := [l : k]. Let g ∈ A[x] be any monic lift of ḡ; then g is also irreducible,
separable, and of degree n. Now let

K[x]
L := = K(α),

(g(x))

where α is the image of x in K[x]/g(x) and has minimal polynomial g. Then L/K is a
finite separable extension, and it follows from Corollary 10.14 that (p, g(α)) is the unique
maximal ideal of A[α] (since ḡ is irreducible) and

B

q
' A[α] A[x]

(p, g(α))
'

(p, g(x))
' (A/p)[x]

.
(

' l
ḡ(x))

We thus have [L : K] = deg g = [l : k] = n, and it follows that L/K is an unramified
extension of degree n = f := [l : k]: the ramification index of q is necessarily e = n/f = 1,
and the extension l/k is separable by assumption (so in fact B = A[α], by Theorem 10.15).

We now show that the functor F is full and faithful. Given finite unramified extensions
L1, L2 with valuation rings B1, B2 and residue fields l1, l2, we have induced maps

HomK(L1, L2) −∼→ HomA(B1, B2) −→ Homk(l1, l2).

The first map is given by restriction from L1 to B1, and since tensoring with K gives an
inverse map in the other direction, it is a bijection. We need to show that the same is
true of the second map, which sends ϕ : B1 → B2 to the k-homomorphism ϕ that sends
α ∈ l1 = B1/q1 to the reduction of ϕ(α) modulo q2, where α is any lift of ᾱ.

As above, use the primitive element theorem to write l1 = k(ᾱ) = k[x]/(ḡ(x)) for some
ᾱ ∈ l1. If we now lift ᾱ to α ∈ B1, we must have L1 = K(α), since [L1 : K] = [l1 : k] is
equal to the degree of the minimal polynomial ḡ of ᾱ which cannot be less than the degree
of the minimal polynomial g of α (both are monic). Moreover, we also have B1 = A[α],
since this is true of the valuation ring of every finite unramified extension in our category,
as shown above.

Each A-module homomorphism in

]
HomA(B1, B2) HomA

(
A[x

= , B2
(g(x))

)
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is uniquely determined by the image of x in B2. Thus gives us a bijection between
HomA(B1, B2) and the roots of g in B2. Similarly, each k-algebra homomorphism in(

k[x]
Homk(l1, l2) = Homk , l2

(ḡ(x))

)
is uniquely determined by the image of x in l2, and there is a bijection between Homk(l1, l2)
and the roots of ḡ in l2. Now ḡ is separable, so every root of ḡ in l2 = B2/q2 lifts to a unique
root of g in B2, by Hensel’s Lemma 9.16. Thus the map HomA(B1, B2) −→ Homk(l1, l2)
induced by F is a bijection.

Remark 10.17. In the proof above we actually only used the fact that L1/K is unramified.
The map HomK(L1, L2)→ Homk(l1, l2) is a bijection even if L2/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.16.

Corollary 10.18. Assume AKLB with A a complete DVR with residue field k. Then L/K
is unramified if and only if B = A[α] for some α ∈ L whose minimal polynomial g ∈ A[x]
has separable image ḡ in k[x].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse
direction note that ḡ must be irreducible, since otherwise we could use Hensel’s lemma to
lift a factorization of ḡ to a factorization of g, so the residue field extension is separable and
has the same degree as L/K, hence is unramified.

When the residue field k is finite (always the case if K is a local field), we can give an
even more precise description of the finite unramified extensions L/K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field
k = Fq, and let ζn be a primitive nth root of unity in some algebraic closure of K, with n
prime to the characteristic of k. The extension K(ζn)/K is unramified.

¯Proof. The field K(ζn) is the splitting field of f(x) = xn − 1 over K. The image f of f
¯ ¯in k[x] is separable if and only if n is not divisible by p, since gcd(f, f ′) is nontrivial only

¯when f ′ = nxn−1 ¯is zero, equivalently, only when p|n. If p 6 | n then f(x) is separable and so
are all of its divisors, including the minimal polynomial of ζn.

Corollary 10.20. Let A be a complete DVR with fraction field K and finite residue field
k := Fq. Let L/K be an extension of degree n. Then L/K is unramified if and only if
L ' K(ζqn 1), in which case B ' A[ζ ]− qn−1 is the integral closure of A in L and L/K is a
Galois extension with Gal(L/K) ' Z/nZ.

Proof. By the previous corollary, K(ζqn−1) is unramified, and it has degree n because the
residue field is the splitting field of xq

n−1 − 1 over Fq, which is an extension of degree n
(indeed, one can take this as the definition of Fqn). We now show that if L/K is unramified
and has degree n, then L = K(ζqn−1).

The residue field extension l/k has degree n, so l ' Fqn has cyclic multiplicative group
generated by an element ᾱ of order qn− 1. The minimal polynomial ḡ ∈ k[x] of ᾱ therefore
divides xq

n−1− n
1, and since ḡ is irreducible, it is coprime to the quotient (xq −1− 1)/ḡ. By

n
Hensel’s Lemma 9.20, we can lift ḡ to a polynomial g ∈ A[x] that divides xq −1 − 1 ∈ A[x],
and by Hensel’s Lemma 9.16 we can lift ᾱ to a root α of g, in which case α is also a root of
xq

n−1 − 1; it must be a primitive (qn − 1)-root of unity because its reduction ᾱ is.
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We have B ' A[ζ ] by Theorem 10.15, and L is the splitting field of xq
n

qn−1
−1−1, since l

is (we can lift the factorization of xq
n−1 − 1 from l to L via Hensel’s lemma). It follows

that L/K is Galois, and the bijection between (qn− 1)-roots of unity in L and l induces an
isomorphism of Galois groups Gal(L/K) ' Gal(l/k) = Gal(Fqn/Fq) ' Z/nZ.

Corollary 10.21. Let A be a complete DVR with fraction field K and finite residue field
of characteristic p, and suppose that K does not contain a primitive pth root of unity. The
extension K(ζm)/K is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.19 implies that K(ζm)/K is unramified. If p
divides m then K(ζm) contains K(ζp), which by Corollary 10.20 is unramified if and only if
K(ζp) ' K(ζpn 1) with n := [K(ζp) : K], which occurs if and only if p divides pn− 1 (since−
ζp 6∈ K), which it does not; thus K(ζp) and therefore K(ζn) is ramified when p|m.

Example 10.22. Consider A = Zp, K = Qp, k = Fp, and fix Fp and Qp. For each positive

integer n, the finite field Fp has a unique extension of degree n in Fp, namely, Fpn . Thus
for each positive integer n, the local field Qp has a unique unramified extension of degree n;
it can be explicitly constructed by adjoining a primitive root of unity ζpn 1 to Qp. The−
element ζ xp

n
will necessarily have minimal polynomial of degree n dividing −1

pn−1 − 1.

Another useful consequence of Theorem 10.16 that applies when the residue field is finite
is that the norm map NL/K restricts to a surjective map B× → A× on unit groups; in fact,
this property characterizes unramified extensions.

Theorem 10.23. Assume AKLB with A a complete DVR with finite residue field. Then
L/K is unramified if and only if NL/K(B×) = A×.

Proof. See Problem Set 6. Let p be the maximal ideal of A, let q be the maximal ideal of
B, and let k := A/p and l := B/q be the corresponding residue fields. Put q := #k, and
let n := [l : k].

We first note that Nl/k(l×) = k× and Tl/k(l) = k. The surjectivity of the norm map
l× → k× follows from the fact for any a ∈ l× we have

Nl/k(a) = a · aq · · · aqn−1
= a(qn−1)/(q−1),

since Gal(l/k) is generated by the Frobenius automorphism x 7→ xq, so ker Nl/k consists of
n

the roots of the polynomial x(q −1)/(q−1)−1. There are at most (qn−1)/(q−1) = #l×/#k×

roots, so im Nl/k has cardinality at least #k× and must equal k×. The surjectivity of the
trace map l→ k follows from the fact that l/k is separable and therefore Tl/k is not the zero
map, and it is a k-linear transformation whose image has dimension 1, so it is surjective.

Since L/K is unramified, we have Gal(L/K) ' Gal(l/k) and the norm maps NL/K and
Nl/k commute with the reduction maps. Let u ∈ A× have image ū in k×. Then ū = Nl/k(ᾱ0)
for some ᾱ0 ∈ l×, and for any lift α0 ∈ B× of ᾱ0 we have

u ≡ NL/K(α0) mod p,

where p = (π) is the maximal ideal of A. We then have

uNL/K(α 1
0)− ≡ 1 + a1π mod p2

for some a1 ∈ A, and if put α1 = 1 + πx1, where TL/K(x1) ≡ a1 mod p, so that

NL/K(α1) ≡ 1 + a 1 2
1π ≡ uNL/K(α0)− mod p ,
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we then have
u ≡ NL/K(α0α1) mod p2.

Continuing in this fashion yields a Cauchy sequence (α0, α0α1, α0α1α2, . . .) that converges
to an element α ∈ B× for which NL/K(α) = u.

We now suppose L/K is ramified, with ramification index e > 1. Let K ′ be the maximal
unramified extension of of K in L with valuation ring A′, maximal ideal p′ and residue field
k′ := A′/p′. Let A1 = 1 + p and similarly define A′1 and B1. We have A× ' k× × A1 (and
similarly for A′× and B×), and the norm maps induce a commutative diagram

B×/B1 A′×/A′1 A×/A1

l× k′× k×

←→
NL/K′

←→ o

←→
NK′/K

←→ o ←→ o

← →
(Nl/k′ )

e ← →
Nk′/k

in which the vertical arrows are all isomorphisms. The right square corresponds to the
unramified extension K ′/K; the commutativity of the norm and reduction maps in this
case were already noted above. The left square corresponds to a totally ramified extension
of degree e, thus the residue field extension is trivial (f = 1), and l× ' k×. Thus any element
of B×/B e

1 can actually be represented by an element x ∈ A′× ⊆ B×, and NL/K (x) = x .′

Definition 10.24. Let L/K be a separable extension. The maximal unramified extension
of K in L is the subfield

E ⊆ L
K E L

E/K fin.
⊆

⋃
unram.
⊆

where the union is over finite unramified subextensions E/K. When L = Ksep is the
separable closure of K, this is the maximal unramified extension of K, denoted Kunr.

Example 10.25. The field Qunr
p is an infinite extension of Qp with Galois group

Gal(Fp/F ˆ
p) = lim Gal(Fpn/Fp) ' limZ/nZ = Z,←

n
− ←

n
−

ˆwhere the inverse limit is taken over positive integers n ordered by divisibility. The ring Z
is the profinite completion of Z. The field Qunr

p has value group Z and residue field Fp.

Theorem 10.26. Assume AKLB with A a complete DVR and separable residue field exten-
sion l/k. Let eL/K and fL/K be the ramification index and residue field degrees, respectively.
The following hold:

(i) There is a unique intermediate field extension E/K that contains every unramified
extension of K in L and it has degree [E : K] = fL/K .

(ii) The extension L/E is totally ramified and has degree [L : E] = eL/K .

(iii) If L/K is Galois then Gal(L/E) = IL/K , where IL/K = Iq is the inertia subgroup of
Gal(L/K) for the unique prime q of B.

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite
separable extension l/k given by the functor F in Theorem 10.16; then [E : K] = [l : k] =
fL/K as desired. The image of the inclusion l ⊆ l of the residue fields of E and L induces
a field embedding E ↪→ L in HomK(E,L), via the functor F . Thus we may regard E

18.785 Fall 2016, Lecture #10, Page 9



as a subfield of L, and it is unique up to isomorphism. If E′/K is any other unramified
extension of K in L with residue field k′, then the inclusions k′ ⊆ l ⊆ l induce embeddings
E′ ⊆ E ⊆ L that must be inclusions.

(ii) We have fL/E = [l : l] = 1, so eL/E = [L : E] = [L : K]/[E : K] = eL/K .
(iii) By Proposition 7.23, we have IL/E = Gal(L/E) ∩ IL/K , and these three groups all

have the same order eL/K so they must coincide.
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