10 Extensions of complete DVRs

We now return to our AKLB setup, where A is a Dedekind domain with fraction field K, the field L is a finite separable extension of K, and B is the integral closure of A in L (which makes B a Dedekind domain with fraction field L). Recall that be a *prime* of A, we mean a nonzero prime ideal, equivalently, a maximal ideal, and similarly for B.

Theorem 10.1. Assume AKLB and that A is a complete DVR with maximal ideal \mathfrak{p} . Then there is a unique prime \mathfrak{q} of B lying above \mathfrak{p} .

Proof. Existence is clear (the factorization of $\mathfrak{p}B$ in the Dedekind domain B is not trivial because $\mathfrak{p}B \neq B$). To prove uniqueness we use the generalized form of Hensel's lemma. Suppose $\mathfrak{q}_1, \mathfrak{q}_2|\mathfrak{p}$ with $\mathfrak{q}_1 \neq \mathfrak{q}_2$. Choose $b \in \mathfrak{q}_1 - \mathfrak{q}_2$ and consider the ring $A[b] \subseteq B$. Then $\mathfrak{q}_1 \cap A[b]$ and $\mathfrak{q}_2 \cap A[b]$ are distinct primes of A[b] lying above \mathfrak{p} . So $A[b]/\mathfrak{p}A[b]$ has at least two nonzero prime ideals and is not a field.

Let $F \in A[x]$ be the minimal polynomial of b over K and, and let $f \in k[a]$ be its reduction to the residue field $k := A/\mathfrak{p}$. Then

$$\frac{k[x]}{(f)} \simeq \frac{A[x]}{(\mathfrak{p}, F)} \simeq \frac{A[b]}{\mathfrak{p}A[b]},$$

so the ring k[x]/(f) is not a field. Therefore f is not irreducible and we can write f = gh for some nonconstant coprime $g, h \in k[x]$. By the generalization of Hensel's lemma, F = GHhas a nontrivial factorization in A[x], which is a contradiction.

Corollary 10.2. Assume AKLB and that A is a complete DVR. Then B is a DVR.

Proof. Every maximal ideal of B must lie above the unique maximal ideal of A, so Theorem 10.1 implies that B has a unique maximal ideal and is therefore a local Dedekind domain, hence a DVR (a semi-local Dedekind domain is a PID and a local PID is a DVR). \Box

Remark 10.3. The assumption that A is complete is necessary. For example, if A is the DVR $\mathbb{Z}_{(5)}$ with fraction field $K = \mathbb{Q}$ and we take $L = \mathbb{Q}(i)$, then the integral closure of A in L is $B = \mathbb{Z}_{(5)}[i]$, which is a PID but not a DVR: the ideals (1 + 2i) and (1 - 2i) are both maximal (and not equal). But notice that if we take completions we get $A = \mathbb{Z}_5$ and $K = \mathbb{Q}_5$, and now $L = \mathbb{Q}_5(i) = \mathbb{Q}_5 = K$, since $x^2 + 1$ has a root in $\mathbb{F}_5 \simeq \mathbb{Z}_5/5\mathbb{Z}_5$ that we can lift to \mathbb{Z}_5 via Hensel's lemma; in this case B = A is a DVR as required.

Definition 10.4. Let K be a field with absolute value | | and let V be a K-vector space. A *norm* on V is a function $|| || : V \to \mathbb{R}_{>0}$ such that

- ||v|| = 0 if and only if v = 0.
- $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in K$ and $v \in V$.
- $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Each norm $\| \|$ induces a topology on V via the distance metric $d(v, w) := \|x - y\|$.

Example 10.5. Let V be a K-vector space with basis (e_i) , and for $v \in V$ let $v_i \in K$ denote the coefficient of e_i in $v = \sum_i v_i e_i$. The sup-norm $||v||_{\infty} := \sup\{|v_i|\}$ is a norm on V (thus every vector space has a norm). If V is also a K-algebra (e.g. a field extension), an absolute value || || on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends the absolute value on K (fix $v \neq 0$ and note that $||\lambda|| ||v|| = ||\lambda v|| = |\lambda| ||v|| \Leftrightarrow ||\lambda|| = |\lambda|)$.

Proposition 10.6. Let V be a vector space of finite dimension over a complete field K. Every norm on V induces the same topology, in which V a complete metric space.

Proof. See Problem Set 5.

Theorem 10.7. Let A be a complete DVR with maximal ideal \mathfrak{p} , discrete valuation $v_{\mathfrak{p}}$, and absolute value $|x|_{\mathfrak{p}} := c^{v_{\mathfrak{p}}(x)}$ with 0 < c < 1. Let L/K be a finite extension of degree n. Then

$$|x| := |\mathcal{N}_{L/K}(x)|_{\mathfrak{p}}^{1/n}$$

is the unique absolute value on L extending $||_{\mathfrak{p}}$, L is complete with respect to ||, and its valuation ring $\{x \in L : |x| \leq 1\}$ is equal to the integral closure B of A in L.

If L/K is separable then B is a complete DVR with unique maximal ideal $\mathfrak{q}|\mathfrak{p}$ whose valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, and || is equal to the absolute value

$$|x|_{\mathfrak{q}} := c^{\frac{1}{e_{\mathfrak{q}}}v_{\mathfrak{q}}(x)},$$

induced by $v_{\mathfrak{q}}$.

Proof. Assuming for the moment that || is actually an absolute value (which is not obvious!), for any $x \in K$ we have

$$|x| = |\mathcal{N}_{L/K}(x)|_{\mathfrak{p}}^{1/n} = |x^n|_{\mathfrak{p}}^{1/n} = |x|_{\mathfrak{p}},$$

so || extends $||_{\mathfrak{p}}$ and is therefore a norm on L. The fact that $||_{\mathfrak{p}}$ is nontrivial means that $|x|_{\mathfrak{p}} \neq 1$ for some $x \in K^{\times}$, and $|x|^a = |x|_{\mathfrak{p}} = |x|$ only for a = 1, which implies that || is the unique absolute value in its equivalence class extending $||_{\mathfrak{p}}$. Inequivalent absolute values on L induce distinct topologies while every norm on L induces the same topology (by Theorem 10.7), so || is the unique absolute value on L that extends $||_{\mathfrak{p}}$.

We now show | | is an absolute value. Clearly |x| = 0 if and only if x = 0, and | | is multiplicative; we only need to check the triangle inequality. For this it is enough to show that $|x + 1| \le |x| + 1$ whenever $|x| \le 1$, since we always have |y + z| = |z||y/z + 1| and |y| + |z| = |z|(|y/z| + 1), and may assume without loss of generality that $|y| \le |z|$. We have

$$|x| \leq 1 \quad \Longleftrightarrow \quad |\mathcal{N}_{L/K}(x)|_{\mathfrak{p}} \leq 1 \quad \Longleftrightarrow \quad N_{L/K}(x) \in A \quad \Longleftrightarrow x \in B,$$

where the first biconditional follows from the definition of | |, the second follows from the definition of $| |_{\mathfrak{p}}$, and the third is Corollary 9.22. We now note that $x \in B$ if and only if $x + 1 \in B$, so $|x| \leq 1$ if and only if $|x + 1| \leq 1$, thus for $|x| \leq 1$ we have $|x + 1| \leq 1 \leq |x| + 1$, as desired. This also shows that B is the valuation ring $\{x \in L : |x| \leq 1\}$ of L as claimed.

We now assume L/K is separable. Then B is a DVR, by Corollary 10.2, and it is complete because it is the valuation ring of L. Let \mathfrak{q} be the unique maximal ideal of B. The valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, by Theorem 9.2 so $v_{\mathfrak{q}}(x) = e_{\mathfrak{q}}v_{\mathfrak{p}}(x)$ for $x \in K^{\times}$. We have $0 < c^{1/e_{\mathfrak{q}}} < 1$, so $|x|_{\mathfrak{q}} := (c^{1/e_{\mathfrak{q}}})^{v_{\mathfrak{q}}(x)}$ is an absolute value on L induced by $v_{\mathfrak{q}}$. To show it is equal to $| \ |$, it suffices to show that it extends $| \ |_{\mathfrak{p}}$, since we already know that $| \ |$ is the unique absolute value on L with this property. For $x \in K^{\times}$ we have

$$|x|_{\mathfrak{q}} = c^{\frac{1}{e_{\mathfrak{q}}}v_{\mathfrak{q}}(x)} = c^{\frac{1}{e_{\mathfrak{q}}}e_{\mathfrak{q}}v_{\mathfrak{p}}(x)} = c^{v_{\mathfrak{p}}(x)} = |x|_{\mathfrak{p}},$$

and the theorem follows.

Remark 10.8. The transitivity of $N_{L/K}$ in towers (Corollary 4.48) implies that we can uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic closure \overline{K} . In fact, this is another form of Hensel's lemma in the following sense: one can show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute value on its fraction field K can be uniquely extended to \overline{K} ; see [4, Theorem 6.6].

Corollary 10.9. Assume AKLB and that A is a complete DVR with maximal ideal \mathfrak{p} and let $\mathfrak{q}|\mathfrak{p}$. Then $v_{\mathfrak{q}}(x) = \frac{1}{f_a} v_{\mathfrak{p}}(N_{L/K}(x))$ for all $x \in L$.

$$Proof. \ v_{\mathfrak{p}}(\mathcal{N}_{L/K}(x)) = v_{\mathfrak{p}}(\mathcal{N}_{L/K}((x))) = v_{\mathfrak{p}}(\mathcal{N}_{L/K}(\mathfrak{q}^{v_{\mathfrak{q}}(x)})) = v_{\mathfrak{p}}(\mathfrak{p}^{f_{\mathfrak{q}}v_{\mathfrak{q}}(x)}) = f_{\mathfrak{q}}v_{\mathfrak{q}}(x).$$

Remark 10.10. One can generalize the notion of a discrete valuation to a *valuation* which is surjective homomorphism $v: K^{\times} \to \Gamma$, where Γ is a (totally) ordered abelian group and $v(x + y) \leq \min(v(x), v(y))$; we extend v to K by defining $v(0) = \infty$ to be strictly greater than any element of Γ . In the AKLB setup with A a complete DVR, one can then define a valuation $v(x) = \frac{1}{e_q} v_q(x)$ with image $\frac{1}{e_q} \mathbb{Z}$ that restricts to the discrete valuation v_p on K. The valuation v then extends to a valuation on \overline{K} with $\Gamma = \mathbb{Q}$. Some texts take this approach, but we will generally stick with discrete valuations (so our absolute value on Lrestricts to K, but our discrete valuations on L do not restrict to discrete valuations on K, they extend them with index e_q). You will have an opportunity to explore more valuations in a more general context on Problem Set 6.

Remark 10.11. In general one defines a valuation ring to be an integral domain A with fraction field K such that for every $x \in K^{\times}$ either $x \in A$ or $x^{-1} \in A$ (possibly both). One can show that this implies the existence of a valuation $v: K \to \Gamma \cup \{\infty\}$ for some Γ .

In our AKLB setup, if A is a complete DVR with maximal ideal \mathfrak{p} then B is a complete DVR with maximal ideal $\mathfrak{q}|\mathfrak{p}$ and the formula $[L:K] = \sum_{p|q} e_{\mathfrak{q}} f_{\mathfrak{q}}$ given by Theorem 5.31 consists of the single term $e_{\mathfrak{q}}f_{\mathfrak{q}}$. We now simplify matters even further by reducing to the two extreme cases $f_{\mathfrak{q}} = 1$ (a totally ramified extension) and $e_{\mathfrak{q}} = 1$ (an unramified extension, provided that the residue field extension is separable).¹

10.1 A local version of the Dedekind-Kummer theorem

To facilitate our investigation of extensions of complete DVRs we first prove a local version of the Dedekind-Kummer theorem (Theorem 6.13); we could adapt our proof of the Dedekind-Kummer theorem but it is actually easier to just prove this directly. Working with a DVR rather than an arbitrary Dedekind domain simplifies matters considerably; in particular, in the AKLB setup, when A is a complete DVR and the residue field extension is separable, the extension L/K is guaranteed to be monogenic (so $B = A[\alpha]$ for some $\alpha \in B$).

We first recall Nakayama's lemma, a very useful result from commutative algebra that comes in a variety of forms. The one most directly applicable to our needs is the following.

Lemma 10.12 (Nakayama's lemma). Let A be a local ring with maximal ideal \mathfrak{p} and residue field $k = A/\mathfrak{p}$, and let M be a finitely generated A-module. If the images of $x_1, \ldots, x_n \in M$ generate $M/\mathfrak{p}M$ as an k-vector space then x_1, \ldots, x_n generate M as an A-module.

¹Recall from Definition 5.33 that separability of the residue field extension is part of the definition of an unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field extension is automatically separable, but in general need not be.

Proof. See [1, Corollary 4.8b].

Lemma 10.13. Let A be a DVR with maximal ideal \mathfrak{p} and residue field $k := A/\mathfrak{p}$, and let B := A[x]/(g(x)) for some polynomial $g \in A[x]$. Every maximal ideal \mathfrak{m} of B contains \mathfrak{p} .

Proof. Suppose not. Then $\mathfrak{m}+\mathfrak{p}B = B$ for some maximal ideal \mathfrak{m} of B. The ring B is finitely generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules are all finitely generated. Let z_1, \ldots, z_n be A-module generators for \mathfrak{m} . Every coset of $\mathfrak{p}B$ in B can be written as $z + \mathfrak{p}B$ for some A-linear combination z of z_1, \ldots, z_n , so the images of z_1, \ldots, z_n generate $B/\mathfrak{p}B$ as an k-vector space. By Nakayama's lemma, z_1, \ldots, z_n generate B, which implies $\mathfrak{m} = B$, a contradiction.

Corollary 10.14. Let A be a DVR with maximal ideal \mathfrak{p} and residue field $k \coloneqq A/\mathfrak{p}$, let $g \in A[x]$ be a polynomial, and let α be the image of x in $B \coloneqq A[x]/(g(x)) = A[\alpha]$. The maximal ideals of B are $(\mathfrak{p}, h_i(\alpha))$, where $h_1, \ldots, h_m \in k[x]$ are the irreducible polynomials appearing in the factorization of g modulo \mathfrak{p} .

Proof. Lemma 10.13 gives us a one-to-one correspondence between the maximal ideals of B and the maximal ideals of

$$\frac{B}{\mathfrak{p}B} \simeq \frac{A[x]}{(\mathfrak{p},g(x))} \simeq \frac{k[x]}{(\bar{g}(x))}$$

where \bar{g} denotes the reduction of g modulo \mathfrak{p} . Each maximal ideal of $k[x]/(\bar{g}(x))$ is generated by the image of one of the $h_i(x)$ (the quotients of the ring $k[x]/(\bar{g}(x))$ that are fields are precisely those isomorphic to k[x]/(h(x)) for some irreducible $h \in k[x]$ dividing \bar{g}). It follows that the maximal ideals of $B = A[\alpha]$ are precisely the ideals $(\mathfrak{p}, h_i(\alpha))$.

We now show that when B is a DVR (always true if A is a complete DVR) and the residue field extension is separable, we can always write $B = A[\alpha]$ as required in the corollary (so our local version of the Dedekind-Kummer theorem is always applicable when L and K are local fields, for example).

Theorem 10.15. Assume AKLB, with A and B DVRs with residue fields $k \coloneqq A/\mathfrak{p}$ and $l \coloneqq B/\mathfrak{q}$. If l/k is separable then $B = A[\alpha]$ for some $\alpha \in B$; if L/K is unramified this holds for any $\alpha \in B$ whose image generates the residue field extension l/k.

Proof. Let $\mathfrak{p}B = \mathfrak{q}^e$ be the factorization of $\mathfrak{p}B$, with ramification index e, and let f = [l:k]be the residue field degree, so that ef = n := [L:K]. The extension l/k is separable, so we may apply the primitive element theorem to write $l = k(\alpha_0)$ for some $\alpha_i \in l$ whose minimal polynomial \bar{g} is separable of degree f (so $\bar{g}(\bar{\alpha}_0) = 0$ and $\bar{g}'(\bar{\alpha}_0) \neq 0$). Let α_0 be any lift of $\bar{\alpha}_0$ to B, and let $g \in A[x]$ be a monic lift of \bar{g} chosen so that $v_{\mathfrak{q}}(g(\alpha_0)) > 1$ and $v_{\mathfrak{q}}(g'(\alpha_0)) = 0$. This is possible since $g(\alpha_0) \equiv \bar{g}(\bar{\alpha}_0) = 0 \mod \mathfrak{q}$, so $v_{\mathfrak{q}}(g(\alpha_0)) \geq 1$ and if equality holds we can replace g by $g - g(\alpha_0)$ without changing $g'(\alpha_0) \equiv \bar{g}'(\bar{\alpha}_0) \neq 0 \mod \mathfrak{q}$. Now let π_0 be any uniformizer for B and let $\alpha \coloneqq \alpha_0 + \pi_0 \in B$ (so $\alpha \equiv \bar{\alpha}_0 \mod \mathfrak{q}$) Writing $g(x + \pi_0) = g(x) + \pi_0 g'(x) + \pi_0^2 h(x)$ for some $h \in A[x]$ via Lemma 9.12, we have

$$v_{\mathfrak{q}}(g(\alpha)) = v_{\mathfrak{q}}(g(\alpha_0 + \pi_0)) = v_{\mathfrak{q}}(g(\alpha_0) + \pi_0 g'(\alpha_0) + \pi_0^2 h(\alpha_0)) = 1$$

so $\pi \coloneqq g(\alpha)$ is also a uniformizer for *B*.

We now claim $B = A[\alpha]$, equivalently, that $1, \alpha, \ldots, \alpha^{n-1}$ generate B as an A-module. By Nakayama's lemma, it suffices to show that the reductions of $1, \alpha, \ldots, \alpha^{n-1}$ span $B/\mathfrak{p}B$ as an k-vector space. We have $\mathfrak{p} = \mathfrak{q}^e$, so $\mathfrak{p}B = (\pi^e)$. We can represent each element of $B/\mathfrak{p}B$ as a coset

$$b + \mathfrak{p}B = b_0 + b_1\pi + b_2\pi \cdots + b_{e-1}\pi^{e-1} + \mathfrak{p}B,$$

where b_0, \ldots, b_{e-1} are determined up to equivalence modulo πB . Now $1, \bar{\alpha}, \ldots, \bar{\alpha}^{f-1}$ are a basis for $B/\pi B = B/\mathfrak{q}$ as a k-vector space, and $\pi = g(\alpha)$, so we can rewrite this as

$$b + \mathfrak{p}B = (a_0 + a_1\alpha + \cdots + a_{f-1}\alpha^{f-1}) + (a_f + a_{f+1}\alpha + \cdots + a_{2f-1}\alpha^{f-1})g(\alpha) + \cdots + (a_{ef-f+1} + a_{ef-f+2}\alpha + \cdots + a_{ef-1}\alpha^{f-1})g(\alpha)^{e-1} + \mathfrak{p}B$$

Since deg g = f, and n = ef, this expresses $b + \mathfrak{p}B$ in the form $b' + \mathfrak{p}B$ with b' in the A-span of $1, \ldots, \alpha^{n-1}$. Thus $B = A[\alpha]$. We now note that if L/K is unramified then e = 1 and f = n, in which case there is no need to require $g(\alpha)$ to be a uniformizer and we can just take $\alpha = \alpha_0$ to be any lift of any $\overline{\alpha}_0$ that generates l over k.

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite unramified extension of L/K of degree n is a corresponding finite separable extension of residue fields l/k of the same degree n. Given that the extensions L/K and l/k are finite separable extensions of the same degree, we might then ask how they are related. More precisely, if we fix K with residue field k, what is the relationship between finite unramified extensions L/K of degree n and finite separable extensions l/k of degree n? Each L/Kuniquely determines a corresponding l/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K form a category C_K whose morphisms are K-algebra homomorphisms, and the finite separable extensions l of k form a category C_k whose morphisms are k-algebra homomorphisms. These two categories are equivalent.

Theorem 10.16. Let A be a complete DVR with fraction field K and residue field $k := A/\mathfrak{p}$. The categories of finite unramified extensions L/K and finite separable extensions l/k are equivalent via the functor \mathcal{F} that sends each L to its residue field l and each K-algebra homomorphism $\varphi: L_1 \to L_2$ to the induced k-algebra homomorphism $\bar{\varphi}: l_1 \to l_2$ of residue fields defined by $\bar{\varphi}(\bar{\alpha}) := \overline{\varphi(\alpha)}$, where α denotes any lift of $\bar{\alpha} \in l_1 := B_1/\mathfrak{q}_1$ to B_1 and $\overline{\varphi(\alpha)}$ is the reduction of $\varphi(\alpha) \in B_2$ to $l_2 := B_2/\mathfrak{q}_2$.

In particular, \mathcal{F} defines a bijection between the isomorphism classes of objects in each category, and if L_1 and L_2 and have residue fields l_1 and l_2 then \mathcal{F} gives a bijection

$$\operatorname{Hom}_K(L_1, L_2) \xrightarrow{\sim} \operatorname{Hom}_k(l_1, l_2).$$

Proof. Let us first verify that \mathcal{F} is well-defined. It is clear that it maps finite unramified extensions L/K to finite separable extension l/k, but we should check that the map on morphisms actually makes sense, i.e. that it does not depend on the lift α of $\bar{\alpha}$ we pick. So let $\varphi: L_1 \to L_2$ be a K-algebra homomorphism, and for $\bar{\alpha} \in l_1$, let α and β be two lifts of $\bar{\alpha}$ to B_1 . Then $\alpha - \beta \in \mathfrak{q}_1$, and this implies that $\varphi(\alpha - \beta) \in \varphi(\mathfrak{q}_1) \subseteq \mathfrak{q}_2$, and therefore $\overline{\varphi(\alpha)} = \overline{\varphi(\beta)}$. The inclusion $\varphi(\mathfrak{q}_1) \subseteq \mathfrak{q}_2$ follows from the fact that the K-algebra homomorphism φ is necessarily injective (it is a homomorphism of fields) and preserves integrality over A, since it fixes every polynomial in A[x]. Thus φ injects B_1 to a subring of B_2 , and since both are DVRs the maximal ideal $\varphi(\mathfrak{q}_1)$ of $\varphi(B_1)$ must be equal to $\mathfrak{q}_2 \cap \varphi(\mathfrak{q}_1)$ and lie in \mathfrak{q}_2 . It's easy to see that \mathcal{F} sends identity morphisms to identity morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that \mathcal{F} is an equivalence of categories we need to prove two things:

- \mathcal{F} is essentially surjective: every l is isomorphic to the residue field of some L.
- \mathcal{F} is full and faithful: the induced map $\operatorname{Hom}_K(L_1, L_2) \to \operatorname{Hom}_k(l_1, l_2)$ is a bijection.

We first show that \mathcal{F} is essentially surjective. Given a finite separable extension l/k, we may apply the primitive element theorem to write

$$l \simeq k(\bar{\alpha}) = \frac{k[x]}{(\bar{g}(x))},$$

for some $\bar{\alpha} \in l$ whose minimal polynomial $\bar{g} \in k[x]$ is necessarily monic, irreducible, separable, and of degree n := [l:k]. Let $g \in A[x]$ be any monic lift of \bar{g} ; then g is also irreducible, separable, and of degree n. Now let

$$L \coloneqq \frac{K[x]}{(g(x))} = K(\alpha),$$

where α is the image of x in K[x]/g(x) and has minimal polynomial g. Then L/K is a finite separable extension, and it follows from Corollary 10.14 that $(\mathfrak{p}, g(\alpha))$ is the unique maximal ideal of $A[\alpha]$ (since \bar{g} is irreducible) and

$$\frac{B}{\mathfrak{q}} \simeq \frac{A[\alpha]}{(\mathfrak{p},g(\alpha))} \simeq \frac{A[x]}{(\mathfrak{p},g(x))} \simeq \frac{(A/\mathfrak{p})[x]}{(\bar{g}(x))} \simeq l.$$

We thus have $[L : K] = \deg g = [l : k] = n$, and it follows that L/K is an unramified extension of degree n = f := [l : k]: the ramification index of \mathfrak{q} is necessarily e = n/f = 1, and the extension l/k is separable by assumption (so in fact $B = A[\alpha]$, by Theorem 10.15).

We now show that the functor \mathcal{F} is full and faithful. Given finite unramified extensions L_1, L_2 with valuation rings B_1, B_2 and residue fields l_1, l_2 , we have induced maps

$$\operatorname{Hom}_K(L_1, L_2) \xrightarrow{\sim} \operatorname{Hom}_A(B_1, B_2) \longrightarrow \operatorname{Hom}_k(l_1, l_2).$$

The first map is given by restriction from L_1 to B_1 , and since tensoring with K gives an inverse map in the other direction, it is a bijection. We need to show that the same is true of the second map, which sends $\varphi \colon B_1 \to B_2$ to the k-homomorphism $\overline{\varphi}$ that sends $\overline{\alpha} \in l_1 = B_1/\mathfrak{q}_1$ to the reduction of $\varphi(\alpha)$ modulo \mathfrak{q}_2 , where α is any lift of $\overline{\alpha}$.

As above, use the primitive element theorem to write $l_1 = k(\bar{\alpha}) = k[x]/(\bar{g}(x))$ for some $\bar{\alpha} \in l_1$. If we now lift $\bar{\alpha}$ to $\alpha \in B_1$, we must have $L_1 = K(\alpha)$, since $[L_1 : K] = [l_1 : k]$ is equal to the degree of the minimal polynomial \bar{g} of $\bar{\alpha}$ which cannot be less than the degree of the minimal polynomial g of α (both are monic). Moreover, we also have $B_1 = A[\alpha]$, since this is true of the valuation ring of every finite unramified extension in our category, as shown above.

Each A-module homomorphism in

$$\operatorname{Hom}_{A}(B_{1}, B_{2}) = \operatorname{Hom}_{A}\left(\frac{A[x]}{(g(x))}, B_{2}\right)$$

is uniquely determined by the image of x in B_2 . Thus gives us a bijection between $\operatorname{Hom}_A(B_1, B_2)$ and the roots of g in B_2 . Similarly, each k-algebra homomorphism in

$$\operatorname{Hom}_{k}(l_{1}, l_{2}) = \operatorname{Hom}_{k}\left(\frac{k[x]}{(\bar{g}(x))}, l_{2}\right)$$

is uniquely determined by the image of x in l_2 , and there is a bijection between $\operatorname{Hom}_k(l_1, l_2)$ and the roots of \overline{g} in l_2 . Now \overline{g} is separable, so every root of \overline{g} in $l_2 = B_2/\mathfrak{q}_2$ lifts to a unique root of g in B_2 , by Hensel's Lemma 9.16. Thus the map $\operatorname{Hom}_A(B_1, B_2) \longrightarrow \operatorname{Hom}_k(l_1, l_2)$ induced by \mathcal{F} is a bijection. \Box

Remark 10.17. In the proof above we actually only used the fact that L_1/K is unramified. The map $\operatorname{Hom}_K(L_1, L_2) \to \operatorname{Hom}_k(l_1, l_2)$ is a bijection even if L_2/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.16.

Corollary 10.18. Assume AKLB with A a complete DVR with residue field k. Then L/K is unramified if and only if $B = A[\alpha]$ for some $\alpha \in L$ whose minimal polynomial $g \in A[x]$ has separable image \overline{g} in k[x].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse direction note that \bar{g} must be irreducible, since otherwise we could use Hensel's lemma to lift a factorization of \bar{g} to a factorization of g, so the residue field extension is separable and has the same degree as L/K, hence is unramified.

When the residue field k is finite (always the case if K is a local field), we can give an even more precise description of the finite unramified extensions L/K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field $k = \mathbb{F}_q$, and let ζ_n be a primitive nth root of unity in some algebraic closure of \overline{K} , with n prime to the characteristic of k. The extension $K(\zeta_n)/K$ is unramified.

Proof. The field $K(\zeta_n)$ is the splitting field of $f(x) = x^n - 1$ over K. The image \bar{f} of f in k[x] is separable if and only if n is not divisible by p, since $gcd(\bar{f}, \bar{f}')$ is nontrivial only when $\bar{f}' = nx^{n-1}$ is zero, equivalently, only when p|n. If $p \nmid n$ then $\bar{f}(x)$ is separable and so are all of its divisors, including the minimal polynomial of ζ_n .

Corollary 10.20. Let A be a complete DVR with fraction field K and finite residue field $k := \mathbb{F}_q$. Let L/K be an extension of degree n. Then L/K is unramified if and only if $L \simeq K(\zeta_{q^n-1})$, in which case $B \simeq A[\zeta_{q^n-1}]$ is the integral closure of A in L and L/K is a Galois extension with $\operatorname{Gal}(L/K) \simeq \mathbb{Z}/n\mathbb{Z}$.

Proof. By the previous corollary, $K(\zeta_{q^n-1})$ is unramified, and it has degree n because the residue field is the splitting field of $x^{q^n-1} - 1$ over \mathbb{F}_q , which is an extension of degree n (indeed, one can take this as the definition of \mathbb{F}_{q^n}). We now show that if L/K is unramified and has degree n, then $L = K(\zeta_{q^n-1})$.

The residue field extension l/k has degree n, so $l \simeq \mathbb{F}_{q^n}$ has cyclic multiplicative group generated by an element $\bar{\alpha}$ of order $q^n - 1$. The minimal polynomial $\bar{g} \in k[x]$ of $\bar{\alpha}$ therefore divides $x^{q^n-1} - 1$, and since \bar{g} is irreducible, it is coprime to the quotient $(x^{q^n-1}-1)/\bar{g}$. By Hensel's Lemma 9.20, we can lift \bar{g} to a polynomial $g \in A[x]$ that divides $x^{q^n-1} - 1 \in A[x]$, and by Hensel's Lemma 9.16 we can lift $\bar{\alpha}$ to a root α of g, in which case α is also a root of $x^{q^n-1} - 1$; it must be a primitive $(q^n - 1)$ -root of unity because its reduction $\bar{\alpha}$ is. We have $B \simeq A[\zeta_{q^n-1}]$ by Theorem 10.15, and L is the splitting field of $x^{q^n-1}-1$, since l is (we can lift the factorization of $x^{q^n-1}-1$ from l to L via Hensel's lemma). It follows that L/K is Galois, and the bijection between (q^n-1) -roots of unity in L and l induces an isomorphism of Galois groups $\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(l/k) = \operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \simeq \mathbb{Z}/n\mathbb{Z}$.

Corollary 10.21. Let A be a complete DVR with fraction field K and finite residue field of characteristic p, and suppose that K does not contain a primitive pth root of unity. The extension $K(\zeta_m)/K$ is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.19 implies that $K(\zeta_m)/K$ is unramified. If p divides m then $K(\zeta_m)$ contains $K(\zeta_p)$, which by Corollary 10.20 is unramified if and only if $K(\zeta_p) \simeq K(\zeta_{p^n-1})$ with $n \coloneqq [K(\zeta_p) : K]$, which occurs if and only if p divides $p^n - 1$ (since $\zeta_p \notin K$), which it does not; thus $K(\zeta_p)$ and therefore $K(\zeta_n)$ is ramified when p|m.

Example 10.22. Consider $A = \mathbb{Z}_p$, $K = \mathbb{Q}_p$, $k = \mathbb{F}_p$, and fix $\overline{\mathbb{F}}_p$ and $\overline{\mathbb{Q}}_p$. For each positive integer n, the finite field \mathbb{F}_p has a unique extension of degree n in $\overline{\mathbb{F}}_p$, namely, \mathbb{F}_{p^n} . Thus for each positive integer n, the local field \mathbb{Q}_p has a unique unramified extension of degree n; it can be explicitly constructed by adjoining a primitive root of unity ζ_{p^n-1} to \mathbb{Q}_p . The element ζ_{p^n-1} will necessarily have minimal polynomial of degree n dividing $x^{p^n-1} - 1$.

Another useful consequence of Theorem 10.16 that applies when the residue field is finite is that the norm map $N_{L/K}$ restricts to a surjective map $B^{\times} \to A^{\times}$ on unit groups; in fact, this property characterizes unramified extensions.

Theorem 10.23. Assume AKLB with A a complete DVR with finite residue field. Then L/K is unramified if and only if $N_{L/K}(B^{\times}) = A^{\times}$.

Proof. See Problem Set 6. Let \mathfrak{p} be the maximal ideal of A, let \mathfrak{q} be the maximal ideal of B, and let $k := A/\mathfrak{p}$ and $l := B/\mathfrak{q}$ be the corresponding residue fields. Put q := #k, and let n := [l:k].

We first note that $N_{l/k}(l^{\times}) = k^{\times}$ and $T_{l/k}(l) = k$. The surjectivity of the norm map $l^{\times} \to k^{\times}$ follows from the fact for any $a \in l^{\times}$ we have

$$N_{l/k}(a) = a \cdot a^q \cdots a^{q^{n-1}} = a^{(q^n-1)/(q-1)},$$

since $\operatorname{Gal}(l/k)$ is generated by the Frobenius automorphism $x \mapsto x^q$, so ker $N_{l/k}$ consists of the roots of the polynomial $x^{(q^n-1)/(q-1)}-1$. There are at most $(q^n-1)/(q-1) = \#l^{\times}/\#k^{\times}$ roots, so im $N_{l/k}$ has cardinality at least $\#k^{\times}$ and must equal k^{\times} . The surjectivity of the trace map $l \to k$ follows from the fact that l/k is separable and therefore $T_{l/k}$ is not the zero map, and it is a k-linear transformation whose image has dimension 1, so it is surjective.

Since L/K is unramified, we have $\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(l/k)$ and the norm maps $N_{L/K}$ and $N_{l/k}$ commute with the reduction maps. Let $u \in A^{\times}$ have image \bar{u} in k^{\times} . Then $\bar{u} = N_{l/k}(\bar{\alpha}_0)$ for some $\bar{\alpha}_0 \in l^{\times}$, and for any lift $\alpha_0 \in B^{\times}$ of $\bar{\alpha}_0$ we have

$$u \equiv \mathcal{N}_{L/K}(\alpha_0) \mod \mathfrak{p},$$

where $\mathbf{p} = (\pi)$ is the maximal ideal of A. We then have

$$u \mathcal{N}_{L/K}(\alpha_0)^{-1} \equiv 1 + a_1 \pi \mod \mathfrak{p}^2$$

for some $a_1 \in A$, and if put $\alpha_1 = 1 + \pi x_1$, where $T_{L/K}(x_1) \equiv a_1 \mod \mathfrak{p}$, so that

$$\mathcal{N}_{L/K}(\alpha_1) \equiv 1 + a_1 \pi \equiv u \mathcal{N}_{L/K}(\alpha_0)^{-1} \bmod \mathfrak{p}^2,$$

we then have

$$u \equiv \mathcal{N}_{L/K}(\alpha_0 \alpha_1) \mod \mathfrak{p}^2.$$

Continuing in this fashion yields a Cauchy sequence $(\alpha_0, \alpha_0\alpha_1, \alpha_0\alpha_1\alpha_2, ...)$ that converges to an element $\alpha \in B^{\times}$ for which $N_{L/K}(\alpha) = u$.

We now suppose L/K is ramified, with ramification index e > 1. Let K' be the maximal unramified extension of of K in L with valuation ring A', maximal ideal \mathfrak{p}' and residue field $k' := A'/\mathfrak{p}'$. Let $A_1 = 1 + \mathfrak{p}$ and similarly define A'_1 and B_1 . We have $A^{\times} \simeq k^{\times} \times A_1$ (and similarly for A'^{\times} and B^{\times}), and the norm maps induce a commutative diagram

$$\begin{array}{cccc} B^{\times}/B_{1} \xrightarrow{\mathbf{N}_{L/K'}} A'^{\times}/A'_{1} \xrightarrow{\mathbf{N}_{K'/K}} A^{\times}/A_{1} \\ \downarrow^{\wr} & \downarrow^{\wr} & \downarrow^{\downarrow} \\ l^{\times} \xrightarrow{(\mathbf{N}_{l/k'})^{e}} k'^{\times} \xrightarrow{\mathbf{N}_{k'/k}} k^{\times} \end{array}$$

in which the vertical arrows are all isomorphisms. The right square corresponds to the unramified extension K'/K; the commutativity of the norm and reduction maps in this case were already noted above. The left square corresponds to a totally ramified extension of degree e, thus the residue field extension is trivial (f = 1), and $l^{\times} \simeq k^{\times}$. Thus any element of B^{\times}/B_1 can actually be represented by an element $x \in A'^{\times} \subseteq B^{\times}$, and $N_{L/K'}(x) = x^e$. \Box

Definition 10.24. Let L/K be a separable extension. The maximal unramified extension of K in L is the subfield

$$\bigcup_{\substack{K \subseteq E \subseteq L \\ E/K \text{ fin. unram.}}} E \subseteq L$$

where the union is over finite unramified subextensions E/K. When $L = K^{\text{sep}}$ is the separable closure of K, this is the maximal unramified extension of K, denoted K^{unr} .

Example 10.25. The field $\mathbb{Q}_p^{\text{unr}}$ is an infinite extension of \mathbb{Q}_p with Galois group

$$\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) = \varprojlim_n \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \simeq \varprojlim_n \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}},$$

where the inverse limit is taken over positive integers n ordered by divisibility. The ring \mathbb{Z} is the *profinite completion* of \mathbb{Z} . The field $\mathbb{Q}_p^{\text{unr}}$ has value group \mathbb{Z} and residue field \mathbb{F}_p .

Theorem 10.26. Assume AKLB with A a complete DVR and separable residue field extension l/k. Let $e_{L/K}$ and $f_{L/K}$ be the ramification index and residue field degrees, respectively. The following hold:

- (i) There is a unique intermediate field extension E/K that contains every unramified extension of K in L and it has degree $[E:K] = f_{L/K}$.
- (ii) The extension L/E is totally ramified and has degree $[L:E] = e_{L/K}$.
- (iii) If L/K is Galois then $\operatorname{Gal}(L/E) = I_{L/K}$, where $I_{L/K} = I_{\mathfrak{q}}$ is the inertia subgroup of $\operatorname{Gal}(L/K)$ for the unique prime \mathfrak{q} of B.

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite separable extension l/k given by the functor \mathcal{F} in Theorem 10.16; then $[E:K] = [l:k] = f_{L/K}$ as desired. The image of the inclusion $l \subseteq l$ of the residue fields of E and L induces a field embedding $E \hookrightarrow L$ in $\operatorname{Hom}_{K}(E, L)$, via the functor \mathcal{F} . Thus we may regard E

as a subfield of L, and it is unique up to isomorphism. If E'/K is any other unramified extension of K in L with residue field k', then the inclusions $k' \subseteq l \subseteq l$ induce embeddings $E' \subseteq E \subseteq L$ that must be inclusions.

(ii) We have $f_{L/E} = [l:l] = 1$, so $e_{L/E} = [L:E] = [L:K]/[E:K] = e_{L/K}$. (iii) By Proposition 7.23, we have $I_{L/E} = \text{Gal}(L/E) \cap I_{L/K}$, and these three groups all have the same order $e_{L/K}$ so they must coincide.

References

- [1] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, 1995.
- [2] N. Koblitz, *p-adic numbers, p-adic analysis, and zeta function*, Springer, 1984.
- [3] S. Lang, *Algebraic number theory*, second edition, Springer, 1994.
- [4] J. Neukirch, Algebraic number theory, Springer, 1999.

MIT OpenCourseWare https://ocw.mit.edu

18.785 Number Theory I Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.