10 Extensions of complete DVRs

We now return to our $A K L B$ setup, where A is a Dedekind domain with fraction field K, the field L is a finite separable extension of K, and B is the integral closure of A in L (which makes B a Dedekind domain with fraction field L). Recall that be a prime of A, we mean a nonzero prime ideal, equivalently, a maximal ideal, and similarly for B.

Theorem 10.1. Assume $A K L B$ and that A is a complete $D V R$ with maximal ideal \mathfrak{p}. Then there is a unique prime \mathfrak{q} of B lying above \mathfrak{p}.

Proof. Existence is clear (the factorization of $\mathfrak{p} B$ in the Dedekind domain B is not trivial because $\mathfrak{p} B \neq B$). To prove uniqueness we use the generalized form of Hensel's lemma. Suppose $\mathfrak{q}_{1}, \mathfrak{q}_{2} \mid \mathfrak{p}$ with $\mathfrak{q}_{1} \neq \mathfrak{q}_{2}$. Choose $b \in \mathfrak{q}_{1}-\mathfrak{q}_{2}$ and consider the ring $A[b] \subseteq B$. Then $\mathfrak{q}_{1} \cap A[b]$ and $\mathfrak{q}_{2} \cap A[b]$ are distinct primes of $A[b]$ lying above \mathfrak{p}. So $A[b] / \mathfrak{p} A[b]$ has at least two nonzero prime ideals and is not a field.

Let $F \in A[x]$ be the minimal polynomial of b over K and, and let $f \in k[a]$ be its reduction to the residue field $k:=A / \mathfrak{p}$. Then

$$
\frac{k[x]}{(f)} \simeq \frac{A[x]}{(\mathfrak{p}, F)} \simeq \frac{A[b]}{\mathfrak{p} A[b]},
$$

so the ring $k[x] /(f)$ is not a field. Therefore f is not irreducible and we can write $f=g h$ for some nonconstant coprime $g, h \in k[x]$. By the generalization of Hensel's lemma, $F=G H$ has a nontrivial factorization in $A[x]$, which is a contradiction.

Corollary 10.2. Assume $A K L B$ and that A is a complete DVR. Then B is a DVR.
Proof. Every maximal ideal of B must lie above the unique maximal ideal of A, so Theorem 10.1 implies that B has a unique maximal ideal and is therefore a local Dedekind domain, hence a DVR (a semi-local Dedekind domain is a PID and a local PID is a DVR).

Remark 10.3. The assumption that A is complete is necessary. For example, if A is the DVR $\mathbb{Z}_{(5)}$ with fraction field $K=\mathbb{Q}$ and we take $L=\mathbb{Q}(i)$, then the integral closure of A in L is $B=\mathbb{Z}_{(5)}[i]$, which is a PID but not a DVR: the ideals $(1+2 i)$ and $(1-2 i)$ are both maximal (and not equal). But notice that if we take completions we get $A=\mathbb{Z}_{5}$ and $K=\mathbb{Q}_{5}$, and now $L=\mathbb{Q}_{5}(i)=\mathbb{Q}_{5}=K$, since $x^{2}+1$ has a root in $\mathbb{F}_{5} \simeq \mathbb{Z}_{5} / 5 \mathbb{Z}_{5}$ that we can lift to \mathbb{Z}_{5} via Hensel's lemma; in this case $B=A$ is a DVR as required.

Definition 10.4. Let K be a field with absolute value $\|$ and let V be a K-vector space. A norm on V is a function $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ such that

- $\|v\|=0$ if and only if $v=0$.
- $\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in K$ and $v \in V$.
- $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in V$.

Each norm \|\| \|induces a topology on V via the distance metric $d(v, w):=\|x-y\|$.
Example 10.5. Let V be a K-vector space with basis $\left(e_{i}\right)$, and for $v \in V$ let $v_{i} \in K$ denote the coefficient of e_{i} in $v=\sum_{i} v_{i} e_{i}$. The sup-norm $\|v\|_{\infty}:=\sup \left\{\left|v_{i}\right|\right\}$ is a norm on V (thus every vector space has a norm). If V is also a K-algebra (e.g. a field extension), an absolute value $\|\|$ on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends the absolute value on K (fix $v \neq 0$ and note that $\|\lambda\|\|v\|=\|\lambda v\|=|\lambda|\|v\| \Leftrightarrow\|\lambda\|=|\lambda|)$.

Proposition 10.6. Let V be a vector space of finite dimension over a complete field K. Every norm on V induces the same topology, in which V a complete metric space.

Proof. See Problem Set 5.
Theorem 10.7. Let A be a complete DVR with maximal ideal \mathfrak{p}, discrete valuation $v_{\mathfrak{p}}$, and absolute value $|x|_{\mathfrak{p}}:=c^{v_{\mathfrak{p}}(x)}$ with $0<c<1$. Let L / K be a finite extension of degree n. Then

$$
|x|:=\left|\mathrm{N}_{L / K}(x)\right|_{\mathfrak{p}}^{1 / n}
$$

is the unique absolute value on L extending $\left|\left.\right|_{\mathfrak{p}}, L\right.$ is complete with respect to $| \mid$, and its valuation ring $\{x \in L:|x| \leq 1\}$ is equal to the integral closure B of A in L.

If L / K is separable then B is a complete $D V R$ with unique maximal ideal $\mathfrak{q} \mid \mathfrak{p}$ whose valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, and $|\mid$ is equal to the absolute value

$$
|x|_{\mathfrak{q}}:=c^{\frac{1}{e_{\mathfrak{q}}} v_{\mathfrak{q}}(x)},
$$

induced by $v_{\mathfrak{q}}$.
Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!), for any $x \in K$ we have

$$
|x|=\left|\mathrm{N}_{L / K}(x)\right|_{\mathfrak{p}}^{1 / n}=\left|x^{n}\right|_{\mathfrak{p}}^{1 / n}=|x|_{\mathfrak{p}},
$$

so $\left.|\mid$ extends $|\right|_{\mathfrak{p}}$ and is therefore a norm on L. The fact that $\left|\left.\right|_{\mathfrak{p}}\right.$ is nontrivial means that $|x|_{\mathfrak{p}} \neq 1$ for some $x \in K^{\times}$, and $|x|^{a}=|x|_{\mathfrak{p}}=|x|$ only for $a=1$, which implies that $|\mid$ is the unique absolute value in its equivalence class extending $\left|\left.\right|_{\mathfrak{p}}\right.$. Inequivalent absolute values on L induce distinct topologies while every norm on L induces the same topology (by Theorem 10.7), so \|| is the unique absolute value on L that extends $\left|\left.\right|_{\mathfrak{p}}\right.$.

We now show \mid is an absolute value. Clearly $|x|=0$ if and only if $x=0$, and $|\mid$ is multiplicative; we only need to check the triangle inequality. For this it is enough to show that $|x+1| \leq|x|+1$ whenever $|x| \leq 1$, since we always have $|y+z|=|z||y / z+1|$ and $|y|+|z|=|z|(|y / z|+1)$, and may assume without loss of generality that $|y| \leq|z|$. We have

$$
|x| \leq 1 \quad \Longleftrightarrow \quad\left|\mathrm{~N}_{L / K}(x)\right|_{\mathfrak{p}} \leq 1 \quad \Longleftrightarrow \quad N_{L / K}(x) \in A \quad \Longleftrightarrow x \in B
$$

where the first biconditional follows from the definition of ||, the second follows from the definition of $\left|\left.\right|_{\mathfrak{p}}\right.$, and the third is Corollary 9.22 . We now note that $x \in B$ if and only if $x+1 \in B$, so $|x| \leq 1$ if and only if $|x+1| \leq 1$, thus for $|x| \leq 1$ we have $|x+1| \leq 1 \leq|x|+1$, as desired. This also shows that B is the valuation ring $\{x \in L:|x| \leq 1\}$ of L as claimed.

We now assume L / K is separable. Then B is a DVR, by Corollary 10.2 , and it is complete because it is the valuation ring of L. Let \mathfrak{q} be the unique maximal ideal of B. The valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, by Theorem $\underline{9.2}$ so $v_{\mathfrak{q}}(x)=e_{\mathfrak{q}} v_{\mathfrak{p}}(x)$ for $x \in K^{\times}$. We have $0<c^{1 / e_{\mathfrak{q}}}<1$, so $|x|_{\mathfrak{q}}:=\left(c^{1 / e_{\mathfrak{q}}}\right)^{v_{\mathfrak{q}}(x)}$ is an absolute value on L induced by $v_{\mathfrak{q}}$. To show it is equal to $\|$, it suffices to show that it extends $\left|\left.\right|_{\mathfrak{p}}\right.$, since we already know that $\|$ is the unique absolute value on L with this property. For $x \in K^{\times}$we have

$$
|x|_{\mathfrak{q}}=c^{\frac{1}{e_{\mathfrak{q}}} v_{\mathfrak{q}}(x)}=c^{\frac{1}{e_{\mathfrak{q}}} e_{\mathfrak{q}} v_{\mathfrak{p}}(x)}=c^{v_{\mathfrak{p}}(x)}=|x|_{\mathfrak{p}},
$$

and the theorem follows.

Remark 10.8. The transitivity of $\mathrm{N}_{L / K}$ in towers (Corollary 4.48) implies that we can uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic closure \bar{K}. In fact, this is another form of Hensel's lemma in the following sense: one can show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute value on its fraction field K can be uniquely extended to \bar{K}; see [4, Theorem 6.6].

Corollary 10.9. Assume $A K L B$ and that A is a complete $D V R$ with maximal ideal \mathfrak{p} and let $\mathfrak{q} \mid \mathfrak{p}$. Then $v_{\mathfrak{q}}(x)=\frac{1}{f_{\mathfrak{q}}} v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}(x)\right)$ for all $x \in L$.

Proof. $v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}(x)\right)=v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}((x))\right)=v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}\left(\mathfrak{q}^{v_{\mathfrak{q}}(x)}\right)\right)=v_{\mathfrak{p}}\left(\mathfrak{p}^{f_{\mathfrak{q}} v_{\mathfrak{q}}(x)}\right)=f_{\mathfrak{q}} v_{\mathfrak{q}}(x)$.
Remark 10.10. One can generalize the notion of a discrete valuation to a valuation which is surjective homomorphism $v: K^{\times} \rightarrow \Gamma$, where Γ is a (totally) ordered abelian group and $v(x+y) \leq \min (v(x), v(y))$; we extend v to K by defining $v(0)=\infty$ to be strictly greater than any element of Γ. In the $A K L B$ setup with A a complete DVR, one can then define a valuation $v(x)=\frac{1}{e_{\mathfrak{q}}} v_{\mathfrak{q}}(x)$ with image $\frac{1}{e_{\mathfrak{q}}} \mathbb{Z}$ that restricts to the discrete valuation $v_{\mathfrak{p}}$ on K. The valuation v then extends to a valuation on \bar{K} with $\Gamma=\mathbb{Q}$. Some texts take this approach, but we will generally stick with discrete valuations (so our absolute value on L restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K, they extend them with index $e_{\mathfrak{q}}$). You will have an opportunity to explore more valuations in a more general context on Problem Set 6 .

Remark 10.11. In general one defines a valuation ring to be an integral domain A with fraction field K such that for every $x \in K^{\times}$either $x \in A$ or $x^{-1} \in A$ (possibly both). One can show that this implies the existence of a valuation $v: K \rightarrow \Gamma \cup\{\infty\}$ for some Γ.

In our $A K L B$ setup, if A is a complete DVR with maximal ideal \mathfrak{p} then B is a complete DVR with maximal ideal $\mathfrak{q} \mid \mathfrak{p}$ and the formula $[L: K]=\sum_{p \mid q} e_{\mathfrak{q}} f_{\mathfrak{q}}$ given by Theorem $\underline{5.31}$ consists of the single term $e_{\mathfrak{q}} f_{\mathfrak{q}}$. We now simplify matters even further by reducing to the two extreme cases $f_{\mathfrak{q}}=1$ (a totally ramified extension) and $e_{\mathfrak{q}}=1$ (an unramified extension, provided that the residue field extension is separable). $\frac{1}{-}$

10.1 A local version of the Dedekind-Kummer theorem

To facilitate our investigation of extensions of complete DVRs we first prove a local version of the Dedekind-Kummer theorem (Theorem 6.13); we could adapt our proof of the DedekindKummer theorem but it is actually easier to just prove this directly. Working with a DVR rather than an arbitrary Dedekind domain simplifies matters considerably; in particular, in the $A K L B$ setup, when A is a complete DVR and the residue field extension is separable, the extension L / K is guaranteed to be monogenic (so $B=A[\alpha]$ for some $\alpha \in B$).

We first recall Nakayama's lemma, a very useful result from commutative algebra that comes in a variety of forms. The one most directly applicable to our needs is the following.

Lemma 10.12 (Nakayama's lemma). Let A be a local ring with maximal ideal \mathfrak{p} and residue field $k=A / \mathfrak{p}$, and let M be a finitely generated A-module. If the images of $x_{1}, \ldots, x_{n} \in M$ generate $M / \mathfrak{p} M$ as an k-vector space then x_{1}, \ldots, x_{n} generate M as an A-module.

[^0]Proof. See [1, Corollary 4.8b].
Lemma 10.13. Let A be a $D V R$ with maximal ideal \mathfrak{p} and residue field $k:=A / \mathfrak{p}$, and let $B:=A[x] /(g(x))$ for some polynomial $g \in A[x]$. Every maximal ideal \mathfrak{m} of B contains \mathfrak{p}.

Proof. Suppose not. Then $\mathfrak{m}+\mathfrak{p} B=B$ for some maximal ideal \mathfrak{m} of B. The ring B is finitely generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules are all finitely generated. Let z_{1}, \ldots, z_{n} be A-module generators for \mathfrak{m}. Every coset of $\mathfrak{p} B$ in B can be written as $z+\mathfrak{p} B$ for some A-linear combination z of z_{1}, \ldots, z_{n}, so the images of z_{1}, \ldots, z_{n} generate $B / \mathfrak{p} B$ as an k-vector space. By Nakayama's lemma, z_{1}, \ldots, z_{n} generate B, which implies $\mathfrak{m}=B$, a contradiction.

Corollary 10.14. Let A be a $D V R$ with maximal ideal \mathfrak{p} and residue field $k:=A / \mathfrak{p}$, let $g \in A[x]$ be a polynomial, and let α be the image of x in $B:=A[x] /(g(x))=A[\alpha]$. The maximal ideals of B are $\left(\mathfrak{p}, h_{i}(\alpha)\right)$, where $h_{1}, \ldots, h_{m} \in k[x]$ are the irreducible polynomials appearing in the factorization of g modulo \mathfrak{p}.

Proof. Lemma 10.13 gives us a one-to-one correspondence between the maximal ideals of B and the maximal ideals of

$$
\frac{B}{\mathfrak{p} B} \simeq \frac{A[x]}{(\mathfrak{p}, g(x))} \simeq \frac{k[x]}{(\bar{g}(x))},
$$

where \bar{g} denotes the reduction of g modulo \mathfrak{p}. Each maximal ideal of $k[x] /(\bar{g}(x))$ is generated by the image of one of the $h_{i}(x)$ (the quotients of the ring $k[x] /(\bar{g}(x))$ that are fields are precisely those isomorphic to $k[x] /(h(x))$ for some irreducible $h \in k[x]$ dividing $\bar{g})$. It follows that the maximal ideals of $B=A[\alpha]$ are precisely the ideals $\left(\mathfrak{p}, h_{i}(\alpha)\right)$.

We now show that when B is a DVR (always true if A is a complete DVR) and the residue field extension is separable, we can always write $B=A[\alpha]$ as required in the corollary (so our local version of the Dedekind-Kummer theorem is always applicable when L and K are local fields, for example).

Theorem 10.15. Assume $A K L B$, with A and B DVRs with residue fields $k:=A / \mathfrak{p}$ and $l:=B / \mathfrak{q}$. If l / k is separable then $B=A[\alpha]$ for some $\alpha \in B$; if L / K is unramified this holds for any $\alpha \in B$ whose image generates the residue field extension l / k.

Proof. Let $\mathfrak{p} B=\mathfrak{q}^{e}$ be the factorization of $\mathfrak{p} B$, with ramification index e, and let $f=[l: k]$ be the residue field degree, so that ef $=n:=[L: K]$. The extension l / k is separable, so we may apply the primitive element theorem to write $l=k\left(\alpha_{0}\right)$ for some $\alpha_{i} \in l$ whose minimal polynomial \bar{g} is separable of degree f (so $\bar{g}\left(\bar{\alpha}_{0}\right)=0$ and $\left.\bar{g}^{\prime}\left(\bar{\alpha}_{0}\right) \neq 0\right)$. Let α_{0} be any lift of $\bar{\alpha}_{0}$ to B, and let $g \in A[x]$ be a monic lift of \bar{g} chosen so that $v_{\mathfrak{q}}\left(g\left(\alpha_{0}\right)\right)>1$ and $v_{\mathfrak{q}}\left(g^{\prime}\left(\alpha_{0}\right)\right)=0$. This is possible since $g\left(\alpha_{0}\right) \equiv \bar{g}\left(\bar{\alpha}_{0}\right)=0 \bmod \mathfrak{q}$, so $v_{\mathfrak{q}}\left(g\left(\alpha_{0}\right)\right) \geq 1$ and if equality holds we can replace g by $g-g\left(\alpha_{0}\right)$ without changing $g^{\prime}\left(\alpha_{0}\right) \equiv \bar{g}^{\prime}\left(\bar{\alpha}_{0}\right) \not \equiv 0 \bmod \mathfrak{q}$. Now let π_{0} be any uniformizer for B and let $\alpha:=\alpha_{0}+\pi_{0} \in B\left(\right.$ so $\left.\alpha \equiv \bar{\alpha}_{0} \bmod \mathfrak{q}\right)$ Writing $g\left(x+\pi_{0}\right)=g(x)+\pi_{0} g^{\prime}(x)+\pi_{0}^{2} h(x)$ for some $h \in A[x]$ via Lemma 9.12 , we have

$$
v_{\mathfrak{q}}(g(\alpha))=v_{\mathfrak{q}}\left(g\left(\alpha_{0}+\pi_{0}\right)\right)=v_{\mathfrak{q}}\left(g\left(\alpha_{0}\right)+\pi_{0} g^{\prime}\left(\alpha_{0}\right)+\pi_{0}^{2} h\left(\alpha_{0}\right)\right)=1 \text {, }
$$

so $\pi:=g(\alpha)$ is also a uniformizer for B.
We now claim $B=A[\alpha]$, equivalently, that $1, \alpha, \ldots, \alpha^{n-1}$ generate B as an A-module. By Nakayama's lemma, it suffices to show that the reductions of $1, \alpha, \ldots, \alpha^{n-1}$ span $B / \mathfrak{p} B$
as an k-vector space. We have $\mathfrak{p}=\mathfrak{q}^{e}$, so $\mathfrak{p} B=\left(\pi^{e}\right)$. We can represent each element of $B / \mathfrak{p} B$ as a coset

$$
b+\mathfrak{p} B=b_{0}+b_{1} \pi+b_{2} \pi \cdots+b_{e-1} \pi^{e-1}+\mathfrak{p} B
$$

where b_{0}, \ldots, b_{e-1} are determined up to equivalence modulo πB. Now $1, \bar{\alpha}, \ldots, \bar{\alpha}^{f-1}$ are a basis for $B / \pi B=B / \mathfrak{q}$ as a k-vector space, and $\pi=g(\alpha)$, so we can rewrite this as

$$
\begin{aligned}
b+\mathfrak{p} B= & \left(a_{0}+a_{1} \alpha+\cdots a_{f-1} \alpha^{f-1}\right)+ \\
& \left(a_{f}+a_{f+1} \alpha+\cdots a_{2 f-1} \alpha^{f-1}\right) g(\alpha)+ \\
& \cdots+ \\
& \left(a_{e f-f+1}+a_{e f-f+2} \alpha+\cdots a_{e f-1} \alpha^{f-1}\right) g(\alpha)^{e-1}+\mathfrak{p} B .
\end{aligned}
$$

Since $\operatorname{deg} g=f$, and $n=e f$, this expresses $b+\mathfrak{p} B$ in the form $b^{\prime}+\mathfrak{p} B$ with b^{\prime} in the A-span of $1, \ldots, \alpha^{n-1}$. Thus $B=A[\alpha]$. We now note that if L / K is unramified then $e=1$ and $f=n$, in which case there is no need to require $g(\alpha)$ to be a uniformizer and we can just take $\alpha=\alpha_{0}$ to be any lift of any $\bar{\alpha}_{0}$ that generates l over k.

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite unramified extension of L / K of degree n is a corresponding finite separable extension of residue fields l / k of the same degree n. Given that the extensions L / K and l / k are finite separable extensions of the same degree, we might then ask how they are related. More precisely, if we fix K with residue field k, what is the relationship between finite unramified extensions L / K of degree n and finite separable extensions l / k of degree n ? Each L / K uniquely determines a corresponding l / k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K form a category \mathcal{C}_{K} whose morphisms are K-algebra homomorphisms, and the finite separable extensions l of k form a category \mathcal{C}_{k} whose morphisms are k-algebra homomorphisms. These two categories are equivalent.

Theorem 10.16. Let A be a complete $D V R$ with fraction field K and residue field $k:=A / \mathfrak{p}$. The categories of finite unramified extensions L / K and finite separable extensions l / k are equivalent via the functor \mathcal{F} that sends each L to its residue field l and each K-algebra homomorphism $\varphi: L_{1} \rightarrow L_{2}$ to the induced k-algebra homomorphism $\bar{\varphi}: l_{1} \rightarrow l_{2}$ of residue fields defined by $\bar{\varphi}(\bar{\alpha}):=\varphi(\alpha)$, where α denotes any lift of $\bar{\alpha} \in l_{1}:=B_{1} / \mathfrak{q}_{1}$ to B_{1} and $\varphi(\alpha)$ is the reduction of $\varphi(\alpha) \in B_{2}$ to $l_{2}:=B_{2} / \mathfrak{q}_{2}$.

In particular, \mathcal{F} defines a bijection between the isomorphism classes of objects in each category, and if L_{1} and L_{2} and have residue fields l_{1} and l_{2} then \mathcal{F} gives a bijection

$$
\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right) .
$$

Proof. Let us first verify that \mathcal{F} is well-defined. It is clear that it maps finite unramified extensions L / K to finite separable extension l / k, but we should check that the map on morphisms actually makes sense, i.e. that it does not depend on the lift α of $\bar{\alpha}$ we pick. So let $\varphi: L_{1} \rightarrow L_{2}$ be a K-algebra homomorphism, and for $\bar{\alpha} \in l_{1}$, let α and β be two lifts of $\bar{\alpha}$ to B_{1}. Then $\alpha-\beta \in \mathfrak{q}_{1}$, and this implies that $\varphi(\alpha-\beta) \in \varphi\left(\mathfrak{q}_{1}\right) \subseteq \mathfrak{q}_{2}$, and therefore $\overline{\varphi(\alpha)}=\overline{\varphi(\beta)}$. The inclusion $\varphi\left(\mathfrak{q}_{1}\right) \subseteq \mathfrak{q}_{2}$ follows from the fact that the K-algebra homomorphism φ is necessarily injective (it is a homomorphism of fields) and preserves
integrality over A, since it fixes every polynomial in $A[x]$. Thus φ injects B_{1} to a subring of B_{2}, and since both are DVRs the maximal ideal $\varphi\left(\mathfrak{q}_{1}\right)$ of $\varphi\left(B_{1}\right)$ must be equal to $\mathfrak{q}_{2} \cap \varphi\left(\mathfrak{q}_{1}\right)$ and lie in \mathfrak{q}_{2}. It's easy to see that \mathcal{F} sends identity morphisms to identity morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that \mathcal{F} is an equivalence of categories we need to prove two things:

- \mathcal{F} is essentially surjective: every l is isomorphic to the residue field of some L.
- \mathcal{F} is full and faithful: the induced map $\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ is a bijection.

We first show that \mathcal{F} is essentially surjective. Given a finite separable extension l / k, we may apply the primitive element theorem to write

$$
l \simeq k(\bar{\alpha})=\frac{k[x]}{(\bar{g}(x))},
$$

for some $\bar{\alpha} \in l$ whose minimal polynomial $\bar{g} \in k[x]$ is necessarily monic, irreducible, separable, and of degree $n:=[l: k]$. Let $g \in A[x]$ be any monic lift of \bar{g}; then g is also irreducible, separable, and of degree n. Now let

$$
L:=\frac{K[x]}{(g(x))}=K(\alpha),
$$

where α is the image of x in $K[x] / g(x)$ and has minimal polynomial g. Then L / K is a finite separable extension, and it follows from Corollary 10.14 that $(\mathfrak{p}, g(\alpha))$ is the unique maximal ideal of $A[\alpha]$ (since \bar{g} is irreducible) and

$$
\frac{B}{\mathfrak{q}} \simeq \frac{A[\alpha]}{(\mathfrak{p}, g(\alpha))} \simeq \frac{A[x]}{(\mathfrak{p}, g(x))} \simeq \frac{(A / \mathfrak{p})[x]}{(\bar{g}(x))} \simeq l .
$$

We thus have $[L: K]=\operatorname{deg} g=[l: k]=n$, and it follows that L / K is an unramified extension of degree $n=f:=[l: k]$: the ramification index of \mathfrak{q} is necessarily $e=n / f=1$, and the extension l / k is separable by assumption (so in fact $B=A[\alpha]$, by Theorem 10.15).

We now show that the functor \mathcal{F} is full and faithful. Given finite unramified extensions L_{1}, L_{2} with valuation rings B_{1}, B_{2} and residue fields l_{1}, l_{2}, we have induced maps

$$
\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{A}\left(B_{1}, B_{2}\right) \longrightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)
$$

The first map is given by restriction from L_{1} to B_{1}, and since tensoring with K gives an inverse map in the other direction, it is a bijection. We need to show that the same is true of the second map, which sends $\varphi: B_{1} \rightarrow B_{2}$ to the k-homomorphism $\bar{\varphi}$ that sends $\bar{\alpha} \in l_{1}=B_{1} / \mathfrak{q}_{1}$ to the reduction of $\varphi(\alpha)$ modulo \mathfrak{q}_{2}, where α is any lift of $\bar{\alpha}$.

As above, use the primitive element theorem to write $l_{1}=k(\bar{\alpha})=k[x] /(\bar{g}(x))$ for some $\bar{\alpha} \in l_{1}$. If we now lift $\bar{\alpha}$ to $\alpha \in B_{1}$, we must have $L_{1}=K(\alpha)$, since $\left[L_{1}: K\right]=\left[l_{1}: k\right]$ is equal to the degree of the minimal polynomial \bar{g} of $\bar{\alpha}$ which cannot be less than the degree of the minimal polynomial g of α (both are monic). Moreover, we also have $B_{1}=A[\alpha]$, since this is true of the valuation ring of every finite unramified extension in our category, as shown above.

Each A-module homomorphism in

$$
\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right)=\operatorname{Hom}_{A}\left(\frac{A[x]}{(g(x))}, B_{2}\right)
$$

is uniquely determined by the image of x in B_{2}. Thus gives us a bijection between $\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right)$ and the roots of g in B_{2}. Similarly, each k-algebra homomorphism in

$$
\operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)=\operatorname{Hom}_{k}\left(\frac{k[x]}{(\bar{g}(x))}, l_{2}\right)
$$

is uniquely determined by the image of x in l_{2}, and there is a bijection between $\operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ and the roots of \bar{g} in l_{2}. Now \bar{g} is separable, so every root of \bar{g} in $l_{2}=B_{2} / \mathfrak{q}_{2}$ lifts to a unique root of g in B_{2}, by Hensel's Lemma 9.16. Thus the map $\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right) \longrightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ induced by \mathcal{F} is a bijection.

Remark 10.17. In the proof above we actually only used the fact that L_{1} / K is unramified. The map $\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ is a bijection even if L_{2} / K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.16.
Corollary 10.18. Assume $A K L B$ with A a complete DVR with residue field k. Then L / K is unramified if and only if $B=A[\alpha]$ for some $\alpha \in L$ whose minimal polynomial $g \in A[x]$ has separable image \bar{g} in $k[x]$.

Proof. The forward direction was proved in the proof of the theorem, and for the reverse direction note that \bar{g} must be irreducible, since otherwise we could use Hensel's lemma to lift a factorization of \bar{g} to a factorization of g, so the residue field extension is separable and has the same degree as L / K, hence is unramified.

When the residue field k is finite (always the case if K is a local field), we can give an even more precise description of the finite unramified extensions L / K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field $k=\mathbb{F}_{q}$, and let ζ_{n} be a primitive nth root of unity in some algebraic closure of \bar{K}, with n prime to the characteristic of k. The extension $K\left(\zeta_{n}\right) / K$ is unramified.

Proof. The field $K\left(\zeta_{n}\right)$ is the splitting field of $f(x)=x^{n}-1$ over K. The image \bar{f} of f in $k[x]$ is separable if and only if n is not divisible by p, since $\operatorname{gcd}\left(\bar{f}, \bar{f}^{\prime}\right)$ is nontrivial only when $\bar{f}^{\prime}=n x^{n-1}$ is zero, equivalently, only when $p \mid n$. If $p \nmid n$ then $\bar{f}(x)$ is separable and so are all of its divisors, including the minimal polynomial of ζ_{n}.

Corollary 10.20. Let A be a complete $D V R$ with fraction field K and finite residue field $k:=\mathbb{F}_{q}$. Let L / K be an extension of degree n. Then L / K is unramified if and only if $L \simeq K\left(\zeta_{q^{n}-1}\right)$, in which case $B \simeq A\left[\zeta_{q^{n}-1}\right]$ is the integral closure of A in L and L / K is a Galois extension with $\operatorname{Gal}(L / K) \simeq \mathbb{Z} / n \mathbb{Z}$.

Proof. By the previous corollary, $K\left(\zeta_{q^{n}-1}\right)$ is unramified, and it has degree n because the residue field is the splitting field of $x^{q^{n}-1}-1$ over \mathbb{F}_{q}, which is an extension of degree n (indeed, one can take this as the definition of $\mathbb{F}_{q^{n}}$). We now show that if L / K is unramified and has degree n, then $L=K\left(\zeta_{q^{n}-1}\right)$.

The residue field extension l / k has degree n, so $l \simeq \mathbb{F}_{q^{n}}$ has cyclic multiplicative group generated by an element $\bar{\alpha}$ of order $q^{n}-1$. The minimal polynomial $\bar{g} \in k[x]$ of $\bar{\alpha}$ therefore divides $x^{q^{n}-1}-1$, and since \bar{g} is irreducible, it is coprime to the quotient $\left(x^{q^{n}-1}-1\right) / \bar{g}$. By Hensel's Lemma 9.20, we can lift \bar{g} to a polynomial $g \in A[x]$ that divides $x^{q^{n}-1}-1 \in A[x]$, and by Hensel's Lemma 9.16 we can lift $\bar{\alpha}$ to a root α of g, in which case α is also a root of $x^{q^{n}-1}-1$; it must be a primitive $\left(q^{n}-1\right)$-root of unity because its reduction $\bar{\alpha}$ is.

We have $B \simeq A\left[\zeta_{q^{n}-1}\right]$ by Theorem 10.15 , and L is the splitting field of $x^{q^{n}-1}-1$, since l is (we can lift the factorization of $x^{q^{n}-1}-1$ from l to L via Hensel's lemma). It follows that L / K is Galois, and the bijection between $\left(q^{n}-1\right)$-roots of unity in L and l induces an isomorphism of Galois $\operatorname{groups} \operatorname{Gal}(L / K) \simeq \operatorname{Gal}(l / k)=\operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{\mathfrak{q}}\right) \simeq \mathbb{Z} / n \mathbb{Z}$.

Corollary 10.21. Let A be a complete $D V R$ with fraction field K and finite residue field of characteristic p, and suppose that K does not contain a primitive pth root of unity. The extension $K\left(\zeta_{m}\right) / K$ is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.19 implies that $K\left(\zeta_{m}\right) / K$ is unramified. If p divides m then $K\left(\zeta_{m}\right)$ contains $K\left(\zeta_{p}\right)$, which by Corollary 10.20 is unramified if and only if $K\left(\zeta_{p}\right) \simeq K\left(\zeta_{p^{n}-1}\right)$ with $n:=\left[K\left(\zeta_{p}\right): K\right]$, which occurs if and only if p divides $p^{n}-1$ (since $\left.\zeta_{p} \notin K\right)$, which it does not; thus $K\left(\zeta_{p}\right)$ and therefore $K\left(\zeta_{n}\right)$ is ramified when $p \mid m$.

Example 10.22. Consider $A=\mathbb{Z}_{p}, K=\mathbb{Q}_{p}, k=\mathbb{F}_{p}$, and fix $\overline{\mathbb{F}}_{p}$ and $\overline{\mathbb{Q}}_{p}$. For each positive integer n, the finite field \mathbb{F}_{p} has a unique extension of degree n in $\overline{\mathbb{F}}_{p}$, namely, $\mathbb{F}_{p^{n}}$. Thus for each positive integer n, the local field \mathbb{Q}_{p} has a unique unramified extension of degree n; it can be explicitly constructed by adjoining a primitive root of unity $\zeta_{p^{n}-1}$ to \mathbb{Q}_{p}. The element $\zeta_{p^{n}-1}$ will necessarily have minimal polynomial of degree n dividing $x^{p^{n}-1}-1$.

Another useful consequence of Theorem 10.16 that applies when the residue field is finite is that the norm map $\mathrm{N}_{L / K}$ restricts to a surjective map $B^{\times} \rightarrow A^{\times}$on unit groups; in fact, this property characterizes unramified extensions.

Theorem 10.23. Assume $A K L B$ with A a complete $D V R$ with finite residue field. Then L / K is unramified if and only if $\mathrm{N}_{L / K}\left(B^{\times}\right)=A^{\times}$.

Proof. See Problem Set 6. Let \mathfrak{p} be the maximal ideal of A, let \mathfrak{q} be the maximal ideal of B, and let $k:=A / \mathfrak{p}$ and $l:=B / \mathfrak{q}$ be the corresponding residue fields. Put $q:=\# k$, and let $n:=[l: k]$.

We first note that $\mathrm{N}_{l / k}\left(l^{\times}\right)=k^{\times}$and $\mathrm{T}_{l / k}(l)=k$. The surjectivity of the norm map $l^{\times} \rightarrow k^{\times}$follows from the fact for any $a \in l^{\times}$we have

$$
\mathrm{N}_{l / k}(a)=a \cdot a^{q} \cdots a^{q^{n-1}}=a^{\left(q^{n}-1\right) /(q-1)}
$$

since $\operatorname{Gal}(l / k)$ is generated by the Frobenius automorphism $x \mapsto x^{q}$, so $\operatorname{ker} \mathrm{N}_{l / k}$ consists of the roots of the polynomial $x^{\left(q^{n}-1\right) /(q-1)}-1$. There are at most $\left(q^{n}-1\right) /(q-1)=\# l^{\times} / \# k^{\times}$ roots, so im $\mathrm{N}_{l / k}$ has cardinality at least $\# k^{\times}$and must equal k^{\times}. The surjectivity of the trace map $l \rightarrow k$ follows from the fact that l / k is separable and therefore $\mathrm{T}_{l / k}$ is not the zero map, and it is a k-linear transformation whose image has dimension 1 , so it is surjective.

Since L / K is unramified, we have $\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(l / k)$ and the norm maps $\mathrm{N}_{L / K}$ and $\mathrm{N}_{l / k}$ commute with the reduction maps. Let $u \in A^{\times}$have image \bar{u} in k^{\times}. Then $\bar{u}=\mathrm{N}_{l / k}\left(\bar{\alpha}_{0}\right)$ for some $\bar{\alpha}_{0} \in l^{\times}$, and for any lift $\alpha_{0} \in B^{\times}$of $\bar{\alpha}_{0}$ we have

$$
u \equiv \mathrm{~N}_{L / K}\left(\alpha_{0}\right) \bmod \mathfrak{p},
$$

where $\mathfrak{p}=(\pi)$ is the maximal ideal of A. We then have

$$
u \mathrm{~N}_{L / K}\left(\alpha_{0}\right)^{-1} \equiv 1+a_{1} \pi \bmod \mathfrak{p}^{2}
$$

for some $a_{1} \in A$, and if put $\alpha_{1}=1+\pi x_{1}$, where $\mathrm{T}_{L / K}\left(x_{1}\right) \equiv a_{1} \bmod \mathfrak{p}$, so that

$$
\mathrm{N}_{L / K}\left(\alpha_{1}\right) \equiv 1+a_{1} \pi \equiv u \mathrm{~N}_{L / K}\left(\alpha_{0}\right)^{-1} \bmod \mathfrak{p}^{2},
$$

we then have

$$
u \equiv \mathrm{~N}_{L / K}\left(\alpha_{0} \alpha_{1}\right) \bmod \mathfrak{p}^{2}
$$

Continuing in this fashion yields a Cauchy sequence ($\alpha_{0}, \alpha_{0} \alpha_{1}, \alpha_{0} \alpha_{1} \alpha_{2}, \ldots$) that converges to an element $\alpha \in B^{\times}$for which $\mathrm{N}_{L / K}(\alpha)=u$.

We now suppose L / K is ramified, with ramification index $e>1$. Let K^{\prime} be the maximal unramified extension of of K in L with valuation ring A^{\prime}, maximal ideal \mathfrak{p}^{\prime} and residue field $k^{\prime}:=A^{\prime} / \mathfrak{p}^{\prime}$. Let $A_{1}=1+\mathfrak{p}$ and similarly define A_{1}^{\prime} and B_{1}. We have $A^{\times} \simeq k^{\times} \times A_{1}$ (and similarly for $A^{\prime \times}$ and B^{\times}), and the norm maps induce a commutative diagram

in which the vertical arrows are all isomorphisms. The right square corresponds to the unramified extension K^{\prime} / K; the commutativity of the norm and reduction maps in this case were already noted above. The left square corresponds to a totally ramified extension of degree e, thus the residue field extension is trivial $(f=1)$, and $l^{\times} \simeq k^{\times}$. Thus any element of B^{\times} / B_{1} can actually be represented by an element $x \in A^{\prime \times} \subseteq B^{\times}$, and $\mathrm{N}_{L / K^{\prime}}(x)=x^{e}$.

Definition 10.24. Let L / K be a separable extension. The maximal unramified extension of K in L is the subfield

$$
\bigcup_{\substack{K \subseteq E \subseteq L \\ E / K \subseteq \text { fin. unram. }}} E \subseteq L
$$

where the union is over finite unramified subextensions E / K. When $L=K^{\text {sep }}$ is the separable closure of K, this is the maximal unramified extension of K, denoted K^{unr}.

Example 10.25. The field $\mathbb{Q}_{p}^{\mathrm{unr}}$ is an infinite extension of \mathbb{Q}_{p} with Galois group
where the inverse limit is taken over positive integers n ordered by divisibility. The ring $\hat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z}. The field $\mathbb{Q}_{p}^{\text {unr }}$ has value group \mathbb{Z} and residue field \mathbb{F}_{p}.

Theorem 10.26. Assume $A K L B$ with A a complete $D V R$ and separable residue field extension l / k. Let $e_{L / K}$ and $f_{L / K}$ be the ramification index and residue field degrees, respectively. The following hold:
(i) There is a unique intermediate field extension E / K that contains every unramified extension of K in L and it has degree $[E: K]=f_{L / K}$.
(ii) The extension L / E is totally ramified and has degree $[L: E]=e_{L / K}$.
(iii) If L / K is Galois then $\operatorname{Gal}(L / E)=I_{L / K}$, where $I_{L / K}=I_{\mathfrak{q}}$ is the inertia subgroup of $\operatorname{Gal}(L / K)$ for the unique prime \mathfrak{q} of B.

Proof. (i) Let E / K be the finite unramified extension of K in L corresponding to the finite separable extension l / k given by the functor \mathcal{F} in Theorem 10.16 ; then $[E: K]=[l: k]=$ $f_{L / K}$ as desired. The image of the inclusion $l \subseteq l$ of the residue fields of E and L induces a field embedding $E \hookrightarrow L$ in $\operatorname{Hom}_{K}(E, L)$, via the functor \mathcal{F}. Thus we may regard E
as a subfield of L, and it is unique up to isomorphism. If E^{\prime} / K is any other unramified extension of K in L with residue field k^{\prime}, then the inclusions $k^{\prime} \subseteq l \subseteq l$ induce embeddings $E^{\prime} \subseteq E \subseteq L$ that must be inclusions.
(ii) We have $f_{L / E}=[l: l]=1$, so $e_{L / E}=[L: E]=[L: K] /[E: K]=e_{L / K}$.
(iii) By Proposition 7.23, we have $I_{L / E}=\operatorname{Gal}(L / E) \cap I_{L / K}$, and these three groups all have the same order $e_{L / K}$ so they must coincide.

References

[1] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, 1995.
[2] N. Koblitz, p-adic numbers, p-adic analysis, and zeta function, Springer, 1984.
[3] S. Lang, Algebraic number theory, second edition, Springer, 1994.
[4] J. Neukirch, Algebraic number theory, Springer, 1999.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Recall from Definition 5.33 that separability of the residue field extension is part of the definition of an unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field extension is automatically separable, but in general need not be.

