18.785 Number theory I Fall 2016
Lecture #10 10/13/2016

10 Extensions of complete DVRs

We now return to our AK LB setup, where A is a Dedekind domain with fraction field K,
the field L is a finite separable extension of K, and B is the integral closure of A in L (which
makes B a Dedekind domain with fraction field L). Recall that be a prime of A, we mean
a nonzero prime ideal, equivalently, a maximal ideal, and similarly for B.

Theorem 10.1. Assume AKLB and that A is a complete DVR with mazimal ideal p.
Then there is a unique prime q of B lying above p.

Proof. Existence is clear (the factorization of pB in the Dedekind domain B is not trivial
because pB # B). To prove uniqueness we use the generalized form of Hensel’s lemma.
Suppose q1, qz|p with q1 # g2. Choose b € q1 — q2 and consider the ring A[b] C B. Then
q1 N A[b] and q2 N A[b] are distinct primes of A[b] lying above p. So A[b]/pA[b] has at least
two nonzero prime ideals and is not a field.

Let F' € Alz] be the minimal polynomial of b over K and, and let f € kla] be its
reduction to the residue field k := A/p. Then

kle] Al Afb]

~

(f) — (0, F) — pAp]

so the ring k[x]/(f) is not a field. Therefore f is not irreducible and we can write f = gh for
some nonconstant coprime g, h € k[z]. By the generalization of Hensel’s lemma, F = GH
has a nontrivial factorization in Alz|, which is a contradiction. O

Corollary 10.2. Assume AKLB and that A is a complete DVR. Then B is a DVR.

Proof. Every maximal ideal of B must lie above the unique maximal ideal of A, so Theo-
rem 10.1 implies that B has a unique maximal ideal and is therefore a local Dedekind do-
main, hence a DVR (a semi-local Dedekind domain is a PID and a local PID is a DVR). O

Remark 10.3. The assumption that A is complete is necessary. For example, if A is the
DVR Zs) with fraction field K = Q and we take L = Q(i), then the integral closure of A
in L is B = Zs)[i], which is a PID but not a DVR: the ideals (1 + 2i) and (1 — 2i) are
both maximal (and not equal). But notice that if we take completions we get A = Zs5 and
K = Qs, and now L = Q5(i) = Q5 = K, since 22 + 1 has a root in F5 ~ Zs5/5Zs that we
can lift to Zs via Hensel’s lemma, in this case B = A is a DVR as required.

Definition 10.4. Let K be a field with absolute value | | and let V' be a K-vector space.
A norm on V is a function || || : V' — Rx¢ such that

e |[v]| =0 if and only if v = 0.

o || Av|| = |\|||v|| for all A € K and v € V.

o |lv+wl| <|v||+ ||Jwl| for all v,w € V.

Each norm || || induces a topology on V' via the distance metric d(v,w) := ||z — y||.

Example 10.5. Let V be a K-vector space with basis (¢;), and for v € V' let v; € K denote
the coefficient of e; in v = ), v;e;. The sup-norm ||v|| := sup{|v;|} is a norm on V' (thus
every vector space has a norm). If V' is also a K-algebra (e.g. a field extension), an absolute
value || || on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends
the absolute value on K (fix v # 0 and note that [|[A]| |[v]| = ||| = [A] ||v]| < ||All = |A]).
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Proposition 10.6. Let V' be a vector space of finite dimension over a complete field K.
Every norm on V induces the same topology, in which V a complete metric space.

Proof. See Problem Set 5. O

Theorem 10.7. Let A be a complete DVR with mazimal ideal p, discrete valuation vy, and
absolute value |x|, := @) with 0 < ¢ < 1. Let L/K be a finite extension of degree n. Then

1
o] := INLxe ()"
is the unique absolute value on L extending | |,, L is complete with respect to | |, and its

valuation ring {x € L : |x| < 1} is equal to the integral closure B of A in L.
If L/K is separable then B is a complete DVR with unique mazimal ideal q|p whose
valuation vq extends vy, with index eq, and | | is equal to the absolute value

a(z)

ifU
|z|q == cea ,
induced by vy.

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!),
for any z € K we have

/n 1/n
= |$n|p

1
|z = [Nk (2)lp = |y,

so | | extends | |, and is therefore a norm on L. The fact that | |, is nontrivial means that
|z, # 1 for some x € K*, and |z|* = |z|, = |z| only for a = 1, which implies that | |
is the unique absolute value in its equivalence class extending | |,. Inequivalent absolute
values on L induce distinct topologies while every norm on L induces the same topology
(by Theorem 10.7), so | | is the unique absolute value on L that extends | |.

We now show | | is an absolute value. Clearly |z| = 0 if and only if # = 0, and | | is
multiplicative; we only need to check the triangle inequality. For this it is enough to show
that | 4+ 1| < |z| + 1 whenever |z| < 1, since we always have |y + z| = |z||ly/z + 1| and
lyl + |z| = |2|(Jy/z] + 1), and may assume without loss of generality that |y| < |z|. We have

lz[ <1 <= [Npg@)p <1 <= Nyg(z)€eA <= 1r€B,

where the first biconditional follows from the definition of | |, the second follows from the
definition of | |, and the third is Corollary 9.22. We now note that x € B if and only if
z+1€ B, so |z| < 1if and only if |z + 1| < 1, thus for || < 1 we have |z +1]| <1 < |z|+1,
as desired. This also shows that B is the valuation ring {z € L : |z| < 1} of L as claimed.
We now assume L/K is separable. Then B is a DVR, by Corollary 10.2, and it is
complete because it is the valuation ring of L. Let q be the unique maximal ideal of B.
The valuation vy extends v, with index eq, by Theorem 9.2 so vq(x) = equy(x) for x € K*.
We have 0 < ¢/¢ < 1, so |z|q == (c!/¢a)va(®) is an absolute value on L induced by vg. To
show it is equal to | |, it suffices to show that it extends | |,, since we already know that | |
is the unique absolute value on L with this property. For x € K* we have
q(x) eieqvp(x) Up (

1
jalg = 78" = cma ) — @) g,

and the theorem follows. O
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Remark 10.8. The transitivity of Nz i in towers (Corollary 4.48) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value on its fraction field K can be uniquely extended to K; see [4, Theorem 6.6].

Corollary 10.9. Assume AKLB and that A is a complete DVR with maxzimal ideal p and
let qlp. Then ve(z) = %qvp(NL/K(x)) forall z € L.

Proof. vp(Np/x(x)) = vp(Np/k((2))) = vp(Np/ (0%))) = v (p/a29()) = foug(2). O

Remark 10.10. One can generalize the notion of a discrete valuation to a valuation which
is surjective homomorphism v: K* — I', where I' is a (totally) ordered abelian group and
v(x +y) < min(v(z),v(y)); we extend v to K by defining v(0) = oo to be strictly greater
than any element of I'. In the AK LB setup with A a complete DVR, one can then define

a valuation v(z) = évq(x) with image éZ that restricts to the discrete valuation v, on K.

The valuation v then extends to a valuation on K with I' = Q. Some texts take this
approach, but we will generally stick with discrete valuations (so our absolute value on L
restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K,
they extend them with index eq). You will have an opportunity to explore more valuations
in a more general context on Problem Set 6.

Remark 10.11. In general one defines a valuation ring to be an integral domain A with
fraction field K such that for every x € K* either x € A or x7! € A (possibly both). One
can show that this implies the existence of a valuation v: K — I' U {oco} for some T'.

In our AK LB setup, if A is a complete DVR with maximal ideal p then B is a complete
DVR with maximal ideal g|p and the formula [L : K| = Zpl 4 €afq given by Theorem 5.31
consists of the single term ey f;. We now simplify matters even further by reducing to the
two extreme cases f; = 1 (a totally ramified extension) and e; = 1 (an unramified extension,
provided that the residue field extension is separable).L

10.1 A local version of the Dedekind-Kummer theorem

To facilitate our investigation of extensions of complete DVRs we first prove a local version of
the Dedekind-Kummer theorem (Theorem 6.13); we could adapt our proof of the Dedekind-
Kummer theorem but it is actually easier to just prove this directly. Working with a DVR
rather than an arbitrary Dedekind domain simplifies matters considerably; in particular, in
the AKLB setup, when A is a complete DVR and the residue field extension is separable,
the extension L/K is guaranteed to be monogenic (so B = Ala] for some a € B).

We first recall Nakayama’s lemma, a very useful result from commutative algebra that
comes in a variety of forms. The one most directly applicable to our needs is the following.

Lemma 10.12 (Nakayama’s lemma). Let A be a local ring with mazimal ideal p and residue
field k = A/p, and let M be a finitely generated A-module. If the images of x1,...,x, € M
generate M /pM as an k-vector space then x1,...,x, generate M as an A-module.

1Recall from Definition 5.33 that separability of the residue field extension is part of the definition of an
unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field
extension is automatically separable, but in general need not be.
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Proof. See [1, Corollary 4.8b]. O

Lemma 10.13. Let A be a DVR with mazimal ideal p and residue field k = A/p, and let
B = Alx]/(g(z)) for some polynomial g € Alz]. Every mazimal ideal m of B contains p.

Proof. Suppose not. Then m+pB = B for some maximal ideal m of B. The ring B is finitely
generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules
are all finitely generated. Let zi,...,z, be A-module generators for m. Every coset of
pB in B can be written as z + pB for some A-linear combination z of z1,...,z,, so the
images of z1,..., z, generate B/pB as an k-vector space. By Nakayama’s lemma, 21,..., 2,
generate B, which implies m = B, a contradiction. O

Corollary 10.14. Let A be a DVR with mazimal ideal p and residue field k == A/p, let
g € Alz] be a polynomial, and let o be the image of x in B = Alz]/(g(z)) = Ala]. The
mazximal ideals of B are (p, hi(a)), where hy, ..., hy € k[z] are the irreducible polynomials
appearing in the factorization of g modulo p.

Proof. Lemma 10.13 gives us a one-to-one correspondence between the maximal ideals of B
and the maximal ideals of

B Alx] N k|x]

pB (p.g(x)  (9(x))
where g denotes the reduction of g modulo p. Each maximal ideal of k[x]/(g(x)) is generated
by the image of one of the h;(z) (the quotients of the ring k[x]/(g(z)) that are fields are
precisely those isomorphic to k[x]/(h(x)) for some irreducible h € k[z]| dividing g). It follows
that the maximal ideals of B = A[a] are precisely the ideals (p, h;(a)). O

We now show that when B is a DVR (always true if A is a complete DVR) and the
residue field extension is separable, we can always write B = A[a] as required in the corollary
(so our local version of the Dedekind-Kummer theorem is always applicable when L and K
are local fields, for example).

Theorem 10.15. Assume AKLB, with A and B DVRs with residue fields k := A/p and
l = B/q. Ifl/k is separable then B = Ala| for some a € B; if L/K is unramified this
holds for any oo € B whose image generates the residue field extension l/k.

Proof. Let pB = q° be the factorization of pB, with ramification index e, and let f = [l : k]
be the residue field degree, so that ef = n = [L : K]. The extension [/k is separable,
so we may apply the primitive element theorem to write [ = k(ag) for some «; € | whose
minimal polynomial g is separable of degree f (so g(ag) = 0 and g'(ap) # 0). Let ag be
any lift of & to B, and let g € Alx] be a monic lift of g chosen so that vq(g(ag)) > 1 and
vq(¢’(ap)) = 0. This is possible since g(ag) = g(a) = 0 mod q, so vq(g(ap)) > 1 and if
equality holds we can replace g by g — g(ag) without changing ¢'(ag) = §' (@) # 0 mod q.
Now let 7y be any uniformizer for B and let « := ap + mp € B (so a = &y mod q) Writing
g(z + mo) = g(z) + mog'(x) + ngh(z) for some h € Alz] via Lemma 9.12, we have

vq(9()) = vq(g(an + 7)) = vg(g(c) + Tog () + mgh(c)) = 1,

so 7 = g(«) is also a uniformizer for B.
We now claim B = Ala], equivalently, that 1,c,...,a" ! generate B as an A-module.
By Nakayama’s lemma, it suffices to show that the reductions of 1, v, ...,a" ! span B/pB

n
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as an k-vector space. We have p = q°, so pB = (7¢). We can represent each element of
B/pB as a coset
b4 pB =by+ bym + by 4 b1 + pB,

where b, ..., b._1 are determined up to equivalence modulo 7B. Now 1,a,...,a/ ! are a

basis for B/mB = B/q as a k-vector space, and m = g(«), so we can rewrite this as

b+pB =(ap+ara+---a;_1af ) +
(af +appio+ - agp_10/ " g(a) +
.
(Gef— i1+ Gef—froa+ - acg1a’ ")g(a) +pB.

Since deg g = f, and n = ef, this expresses b+ pB in the form &’ +pB with ¢’ in the A-span
of 1,...,a" 1. Thus B = A[a]. We now note that if L/K is unramified then e = 1 and
f = n, in which case there is no need to require g(«) to be a uniformizer and we can just
take a = ag to be any lift of any @y that generates [ over k. O

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite
unramified extension of L/K of degree n is a corresponding finite separable extension of
residue fields [/k of the same degree n. Given that the extensions L/K and [/k are finite
separable extensions of the same degree, we might then ask how they are related. More
precisely, if we fix K with residue field k£, what is the relationship between finite unramified
extensions L/K of degree n and finite separable extensions [/k of degree n? Each L/K
uniquely determines a corresponding [/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K
form a category Cx whose morphisms are K-algebra homomorphisms, and the finite sepa-
rable extensions [ of k form a category Cr, whose morphisms are k-algebra homomorphisms.
These two categories are equivalent.

Theorem 10.16. Let A be a complete DVR with fraction field K and residue field k := A/p.
The categories of finite unramified extensions L/K and finite separable extensions l/k are
equivalent via the functor F that sends each L to its residue field | and each K-algebra
homomorphism @: L1 — Lo to the induced k-algebra homomorphism @: 11 — la of residue
fields defined by ¢(@) = p(a), where a denotes any lift of & € l; = B1/q1 to By and ¢(a)
is the reduction of ¢(a) € By to la = Ba/qs.

In particular, F defines a bijection between the isomorphism classes of objects in each
category, and if L1 and Lo and have residue fields l1 and ly then F gives a bijection

HOmK(Ll, LQ) i> HOmk(ll, lg).

Proof. Let us first verify that F is well-defined. It is clear that it maps finite unramified
extensions L/K to finite separable extension [/k, but we should check that the map on
morphisms actually makes sense, i.e. that it does not depend on the lift a@ of & we pick.
So let ¢: L1 — Lo be a K-algebra homomorphism, and for & € I, let « and 8 be two
lifts of @ to By. Then a — 8 € q1, and this implies that ¢(a — 8) € ¢(q1) € q2, and
therefore () = ¢(8). The inclusion ¢(q1) C qo follows from the fact that the K-algebra
homomorphism ¢ is necessarily injective (it is a homomorphism of fields) and preserves
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integrality over A, since it fixes every polynomial in A[z]. Thus ¢ injects B to a subring
of Bs, and since both are DVRs the maximal ideal ¢(q7) of ¢(B1) must be equal to g2Ne(q1)
and lie in qo. It’s easy to see that F sends identity morphisms to identity morphisms and
that it is compatible with composition, so we have a well-defined functor.

To show that F is an equivalence of categories we need to prove two things:

e F is essentially surjective: every [ is isomorphic to the residue field of some L.

e F is full and faithful: the induced map Hompg (L, L2) — Homy(l1,l2) is a bijection.

We first show that F is essentially surjective. Given a finite separable extension [/k, we
may apply the primitive element theorem to write

l~k(a)=

for some @ € [ whose minimal polynomial § € k[x] is necessarily monic, irreducible, separa-
ble, and of degree n := [l : k]. Let g € A[x] be any monic lift of g; then g is also irreducible,
separable, and of degree n. Now let

where « is the image of = in K[z]/g(x) and has minimal polynomial g. Then L/K is a
finite separable extension, and it follows from Corollary 10.14 that (p, g(«)) is the unique
maximal ideal of A[a] (since g is irreducible) and

B Al Alz] _ (A/p)la] _,
a  (hyl@) (b)) (@)

We thus have [L : K] = degg = [l : k] = n, and it follows that L/K is an unramified
extension of degree n = f := [l : k]: the ramification index of q is necessarily e = n/f =1,
and the extension [/k is separable by assumption (so in fact B = A[a], by Theorem 10.15).

We now show that the functor F is full and faithful. Given finite unramified extensions
L1, Lo with valuation rings By, By and residue fields I, ls, we have induced maps

HOIDK(Ll, LQ) L) HOHlA(Bl, BQ) — Homk(ll, lg)

The first map is given by restriction from L; to Bj, and since tensoring with K gives an
inverse map in the other direction, it is a bijection. We need to show that the same is
true of the second map, which sends ¢: By — By to the k-homomorphism @ that sends
@ € l; = B1/q1 to the reduction of ¢(a) modulo q2, where « is any lift of a.

As above, use the primitive element theorem to write Iy = k(&) = k[z]/(g(x)) for some
a € ;. If we now lift @ to @ € By, we must have L1 = K(«), since [Ly : K] = [l; : k] is
equal to the degree of the minimal polynomial g of & which cannot be less than the degree
of the minimal polynomial g of « (both are monic). Moreover, we also have B; = Ala],
since this is true of the valuation ring of every finite unramified extension in our category,
as shown above.

Each A-module homomorphism in

Hom4(Bj, B2) = Homy <(i[;c)]),Bg>
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is uniquely determined by the image of x in By. Thus gives us a bijection between
Hom 4 (B, Bs) and the roots of g in Bs. Similarly, each k-algebra homomorphism in

k(]
Homy (11, l2) = Homy <_,lz>
(9(x))
is uniquely determined by the image of x in Iz, and there is a bijection between Homy (1, l2)
and the roots of g in ls. Now g is separable, so every root of g in ls = Bs/q2 lifts to a unique
root of g in By, by Hensel’s Lemma 9.16. Thus the map Hom4 (B, Ba) — Homg/(l1,l2)
induced by F is a bijection. O

Remark 10.17. In the proof above we actually only used the fact that L; /K is unramified.
The map Hompg (L1, Ly) — Homg(l1,12) is a bijection even if Ly/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.16.

Corollary 10.18. Assume AK LB with A a complete DVR with residue field k. Then L/K
is unramified if and only if B = Ala] for some oo € L whose minimal polynomial g € Alx]
has separable image g in k[zx].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse
direction note that g must be irreducible, since otherwise we could use Hensel’s lemma to
lift a factorization of g to a factorization of g, so the residue field extension is separable and
has the same degree as L /K, hence is unramified. ]

When the residue field k is finite (always the case if K is a local field), we can give an
even more precise description of the finite unramified extensions L/K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field
k =Tg4, and let ¢, be a primitive nth root of unity in some algebraic closure of K, with n
prime to the characteristic of k. The extension K((,)/K is unramified.

Proof. The field K((y,) is the splitting field of f(z) = 2™ — 1 over K. The image fof f
in k[z] is separable if and only if n is not divisible by p, since ged(f, f’) is nontrivial only
when f' = nz" ! is zero, equivalently, only when p|n. If p fn then f(z) is separable and so

are all of its divisors, including the minimal polynomial of (,. O

Corollary 10.20. Let A be a complete DVR with fraction field K and finite residue field
k .= TF,. Let L/K be an extension of degree n. Then L/K is unramified if and only if
L ~ K((qn—1), in which case B >~ A[(4n_1] is the integral closure of A in L and L/K is a
Galois extension with Gal(L/K) ~ Z/nZ.

Proof. By the previous corollary, K((,»—1) is unramified, and it has degree n because the
residue field is the splitting field of 27" ~' — 1 over F ¢> Which is an extension of degree n
(indeed, one can take this as the definition of Fy»). We now show that if L/K is unramified
and has degree n, then L = K ((4n_1).

The residue field extension [/k has degree n, so [ ~ Fy» has cyclic multiplicative group
generated by an element @ of order ¢" — 1. The minimal polynomial g € k[z]| of @ therefore
divides 27"~ — 1, and since § is irreducible, it is coprime to the quotient (:L’qn_l —1)/g. By
Hensel’s Lemma 9.20, we can lift § to a polynomial g € A[z] that divides 27 ! —1 € A[z],
and by Hensel’s Lemma 9.16 we can lift & to a root « of g, in which case « is also a root of
29" ~1 — 1; it must be a primitive (¢" — 1)-root of unity because its reduction @ is.
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We have B ~ A[(;n—1] by Theorem 10.15, and L is the splitting field of z7" 1 —1, since [
is (we can lift the factorization of %" ~! — 1 from [ to L via Hensel’s lemma). It follows

that L/K is Galois, and the bijection between (¢™ — 1)-roots of unity in L and [ induces an
isomorphism of Galois groups Gal(L/K) ~ Gal(l/k) = Gal(Fgn /Fq) ~ Z/n’Z. O

Corollary 10.21. Let A be a complete DVR with fraction field K and finite residue field
of characteristic p, and suppose that K does not contain a primitive pth root of unity. The
extension K((y)/K is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.19 implies that K ((y,)/K is unramified. If p
divides m then K ((,) contains K ((,), which by Corollary 10.20 is unramified if and only if
K((p) ~ K (¢pn_1) with n == [K(¢) : K], which occurs if and only if p divides p” — 1 (since
(p € K), which it does not; thus K((,) and therefore K((,) is ramified when p|m. O

Example 10.22. Consider A =Z,, K = Q,,, k =, and fix Fp and @p. For each positive
integer n, the finite field IF,, has a unique extension of degree n in Fp, namely, F,». Thus
for each positive integer n, the local field Q, has a unique unramified extension of degree n;
it can be explicitly constructed by adjoining a primitive root of unity (yn_1 to @Q,. The
element (,n»_; will necessarily have minimal polynomial of degree n dividing P -1,

Another useful consequence of Theorem 10.16 that applies when the residue field is finite
is that the norm map Ny /¢ restricts to a surjective map B* — A* on unit groups; in fact,
this property characterizes unramified extensions.

Theorem 10.23. Assume AKLB with A a complete DVR with finite residue field. Then
L/K is unramified if and only if Ny, (B*) = A*.

Proof. See Problem Set 6. Let p be the maximal ideal of A, let q be the maximal ideal of
B, and let k := A/p and | := B/q be the corresponding residue fields. Put ¢ := #k, and
let n:=[l:k|

We first note that N;/,(1*) = & and Ty () = k. The surjectivity of the norm map
[* — k* follows from the fact for any a € [* we have

Nyg(a) =a-a?--- a?" " = gla" D/ (a1

since Gal(l/k) is generated by the Frobenius automorphism x — x4, so ker N, /I consists of

the roots of the polynomial (4" ~1/(¢=1) —1_ There are at most (¢" —1)/(q—1) = #1* /#k*
roots, so im N;, has cardinality at least #k* and must equal k*. The surjectivity of the
trace map [ — k follows from the fact that [/k is separable and therefore T/, is not the zero
map, and it is a k-linear transformation whose image has dimension 1, so it is surjective.

Since L/K is unramified, we have Gal(L/K) ~ Gal(l/k) and the norm maps Ny, x and
Ny, commute with the reduction maps. Let u € A* have image % in k. Then @ = N;/,(ao)
for some ag € I, and for any lift ag € B* of @y we have

u = Np /g (ap) mod p,
where p = () is the maximal ideal of A. We then have
uNL/K(ao)fl =14 a;7 mod p?
for some a1 € A, and if put oy = 1 4+ wx1, where TL/K(xl) = aq mod p, so that

Ny k(o) =1+am = uNL/K(ao)_l mod p?,
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we then have
u = Np g (apar) mod p2.

Continuing in this fashion yields a Cauchy sequence (g, apar, apagag, .. .) that converges
to an element o € B* for which Ny /g (o) = u.

We now suppose L/K is ramified, with ramification index e > 1. Let K’ be the maximal
unramified extension of of K in L with valuation ring A’, maximal ideal p’ and residue field
K :=A'/p'. Let A1 =1+ p and similarly define A} and B;. We have A* ~ k* x A; (and
similarly for A’ and B*), and the norm maps induce a commutative diagram

N ’ Nyer
B*/By —55 A jAp 25 A% /A,

I § L

X (Nyjwr)© /% Ny /g X

in which the vertical arrows are all isomorphisms. The right square corresponds to the
unramified extension K’'/K; the commutativity of the norm and reduction maps in this
case were already noted above. The left square corresponds to a totally ramified extension
of degree e, thus the residue field extension is trivial (f = 1), and [ ~ k*. Thus any element
of B* /By can actually be represented by an element x € A™ C B*, and Ny, /g (2) = 2¢. 0

Definition 10.24. Let L/K be a separable extension. The mazimal unramified extension
of K in L is the subfield
U EcL

KCECL
E/K fin. unram.
where the union is over finite unramified subextensions F/K. When L = K*P is the
separable closure of K, this is the mazimal unramified extension of K, denoted K"™.

Example 10.25. The field Q)™ is an infinite extension of Q, with Galois group

Gal(F,/Fy) = lim Gal(Fyn /F,) = lim Z/nZ = Z,

where the inverse limit is taken over positive integers n ordered by divisibility. The ring Z
is the profinite completion of Z. The field Q)™ has value group Z and residue field F).

Theorem 10.26. Assume AK LB with A a complete DVR and separable residue field exten-
sionl/k. Let er i and fr i be the ramification index and residue field degrees, respectively.
The following hold:

(i) There is a unique intermediate field extension E/K that contains every unramified
extension of K in L and it has degree [E : K] = fr k.

(ii) The extension L/E is totally ramified and has degree [L : E] = e,/

(iii) If L/K is Galois then Gal(L/E) = Iy i, where I i = Iy is the inertia subgroup of
Gal(L/K) for the unique prime q of B.

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite
separable extension [/k given by the functor F in Theorem 10.16; then [F : K| = [l : k] =
Jr K as desired. The image of the inclusion [ C [ of the residue fields of ' and L induces
a field embedding F < L in Homg (F, L), via the functor F. Thus we may regard E
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as a subfield of L, and it is unique up to isomorphism. If E'/K is any other unramified
extension of K in L with residue field &', then the inclusions ¥’ C [ C [ induce embeddings
E' C E C L that must be inclusions.

(ii) We have fr g =[l:l]=1,s0 e yp=[L: E]=[L: K|/[E: K] =ep/k.

(iii) By Proposition 7.23, we have I,/ = Gal(L/E) N Iy,/k, and these three groups all
have the same order ey /i so they must coincide. O
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