
18.783 Elliptic Curves Spring 2017 

Problem Set #4 

Description 

These problems are related to the material covered in Lectures 7-9. 

Instructions: Pick any two of Problems 1-6 to solve. Then complete Problem 7, which 
is a short survey. Your solutions are to be written up in latex and submitted as a pdf-file 
with a filename of the form SurnamePset4.pdf 

Collaboration is permitted/encouraged, but you must identify your collaborators, 
and any references not listed in the course syllabus. The first to spot each non-trivial 
typo/error in the problem sets or lecture notes will receive 1-5 points of extra credit. 

Problem 1. The Hasse invariant (50 points) 
2Let E : y = f(x) be an elliptic curve over Fp, where p is an odd prime and f is a monic 

cubic. The Hasse invariant Hp(E) is the coefficient of xp−1 in f(x)(p−1)/2 ∈ Fp[x]. 

(a) Prove that #E(Fp) = 1 +
P 

f(a)(p−1)/2 holds as an identity in Fp.a∈Fp 

(b) Prove that for any integer k ≥ 0 we have(X −1 if k is a nonzero multiple of p − 1k a = 
0 otherwise 

a∈Fp

(c) Use (b) to show that #E(Fp) = 1 − Hp(E) holds as an identity in Fp, and that
Hp(E) is therefore an element of Fp that is equal to the trace of Frobenius tr πE
modulo p. Conclude that Hp(E) uniquely determines #E(Fp) for all p > 13.

(d) Show that for p = 13 there exist elliptic curves E1 and E2 over Fp for which we have
Hp(E1) = Hp(E2) but #E1(Fp) 6= #E2(Fp).

2(e) Suppose E is a Legendre curve Eλ : y = x(x − 1)(x − λ) with λ ∈ Fp −{0, 1}. Prove 
that Hp(E) = (−1)nSp(λ), where n = (p − 1)/2 and Sp ∈ Fp[x] is the polynomial 

n � �2X n iSp(x) = x . 
i 

i=0 

Let us now generalize to the case where E : y2 = f(x) is an elliptic curve over a finite 
field Fq of odd characteristic p, with f a monic cubic. For any positive integer r, define 

pr−1 r −1)/2Hpr (E) to be the coefficient of x in f(x)(p (for r = 1 this generalizes our 
definition of Hp(E) to elliptic curves defined over any finite extension Fp). 

(f) Show that #E(Fq) = 1 − Hq(E). Conclude that Hq(E) ∈ Fp ⊆ Fq and that we have
tr πE ≡ 0 mod p if and only if Hq(E) = 0.

(g) Prove that the identity Hpr+1 (E) = Hpr (E)Hp(E)
pr 
holds for all integers r > 0.

Conclude that Hq(E) = 0 if and only if Hp(E) = 0.
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(h) Show that, up to isomorphism, every elliptic curve E over Fp is a Legendre curve 
2Eλ : y = x(x − 1)(x − λ), for some λ ∈ Fp − {0, 1}. 

(i) Show that for all λ ∈ Fp − {0, 1} we have Hp(Eλ) = 0 if and only if Sp(λ) = 0. 
Conclude that (up to isomorphism), among the infinitely many elliptic curves E/Fp, 
only a finitely number have tr πE ≡ 0 mod p. 

In a later lecture we will show that an elliptic E curve over a finite field of char-
acteristic p > 0 is supersingular if and only if tr πE ≡ 0 mod p. You have thus proved 
that there are only finitely many supersingular elliptic curve defined over finite fields of 
characteristic p (in fact this holds for all fields of characteristic p, not just finite fields). 

Problem 2. Computing the L-function of an elliptic curve (50 points) 
2 3Let E : y = x + Ax + B be an elliptic curve over Q; without loss of generality, we may 

assume A, B ∈ Z with B 6 0.= As you may recall from Lecture 1, the L-function of an 
elliptic curve can defined as an Euler product of the form Y Y 

)−1 −s 1−2s)−1L(E, s) = (· · · (1 − app + p , 
p|Δ(E) p-Δ(p) 

where Δ(E) = −16(4A3 +27B2) is the discriminant of E and ap := p+1−#Ep(Fp) is the 
trace of Frobenius of the elliptic curve Ep/Fp obtained by reducing A and B modulo p. 
Ignoring the finite set of bad primes p that divide Δ(E) (which are easy to address 
and will be discussed in a later lecture), computing the L-function of an elliptic curve 
amounts to computing the sequence of Frobenius traces ap over good primes p. 
Of course we cannot compute all of the infinitely many ap, but if we compute them 

for all good primes p up to some bound N , we can approximate L(E, s) or any of its 
derivatives to high precision (assuming we also know the Euler factors at bad primes). 
Such computations are critical to testing the Birch and Swinnerton-Dyer conjecture, for 
example, which relates the order of vanishing of L(E, s) at s = 1 to the rank of E(Q). 
By applying Schoof’s algorithm to each of Ep/Fp we can compute ap for all good 

primes p ≤ N in time quasi-linear in N (you can use the results of Problem 6 to get a 
precise estimate). Alternatively, we could use the baby-steps giant-steps algorithm from 
Problem 4 to obtain a running time that is quasi-linear in N5/4; in practice this turns 
out to be faster than using Schoof’s algorithm unless N is extremely large. 
Neither of these approaches takes advantage of the fact that we are working with 

reductions Ep of a fixed elliptic curve E/Q. In this problem you will use this fact to 
develop an algorithm with a complexity is both practically and asymptotically faster 
than using Schoof’s algorithm. It also efficiently generalizes to higher genus curves, 
which is not true of either Schoof’s algorithm or the baby-steps giant-steps approach. 
Our basic strategy is to compute the Hasse Invariant Hp(Ep) defined in Problem 1 

3as the coefficient of xp−1 in f(x)(p−1)/2, where f(x) = x + Ax + B is the cubic defining 
2our elliptic curve E : y = f(x), except now f ∈ Z[x] is an integer polynomial. If we 

iteratively compute f(x), f(x)2, f(x)3 , · · · , f(x)bN/2c as integer polynomials and for each 
2nprime p = 2n + 1 extract the coefficient of x from the polynomial f(x)n and reduce 

its value modulo p = 2n + 1, then we will have determined ap ≡ Hp(Ep) mod p for all 
primes p ≤ N where E has good reduction. As shown in part (c) of Problem 1, this 
will determine the trace of Frobenius ap ∈ Z for all p > 13 (and for p ≤ 13 we can just 
compute ap = p + 1 − #Ep(Fp) using brute force). 
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(a) Show that at first glance this is a terrible idea by analyzing its complexity as a 
function of N , assuming the coefficients A and B each have O(log N) bits. Keep in 
mind that we are working in Z, so the coefficient sizes in f(x)n increase with n. 

Even using fast multiplication (M(n) = O(n log n log log n)) your answer to (a) will 
be far from our quasi-linear goal. There are two keys to obtaining an efficient algorithm; 
the first is to avoid computing all the coefficients of f(x)n . P 
(b) Let f = fix

i ∈ Z[x] be a polynomial of degree d, and for each m ∈ Z and n ∈ Z≥0 
mlet fn ∈ Z denote the coefficient of x in f(x)n (so fn = 0 for m < 0). Derive the m m 

identity 
dX 

mf0f
n = ((n + 1)i − m)fifm

n 
−i,m 

i=1 

mwhich expresses the coefficient fn of x in f(x)n as a linear combination of dm 
coefficients fn

m−2, . . . , f
n 

m−1, f
n of lower order terms. m−d 

n(c) For each m ∈ Z define the row vector v := [fn , fn , . . . , fn ] ∈ Zd . Them m−d+1 m−d+2 m

linear recurrence in (a) determines integer matrices Mn ∈ Zd×d, with coefficients m 
depending on m, n, f0, . . . , fd ∈ Z, that satisfy 

n nmf0v = vm−1M
n 

m m 

for all m, n ≥ 1. Write down the matrix Mn explicitly for the case d = 3. m 

(d) Show that provided f0 6= 0, for all m, n ≥ 1 we have 

1n v = V0M
n · · · Mn ,m 1 m

fm−n m!0 

where V0 := [0, . . . , 0, 1] ∈ Zd . 

(e) Now suppose p = 2n + 1 is an odd prime not dividing f0. For convenience let us 
specialize to the case d = 3 of interest and define ⎡ ⎤ 

0 0 (3 − 2m)f3 

Mm := ⎣2mf0 0 (2 − 2m)f2⎦ . 
0 2mf0 (1 − 2m)f1 

Notice that the matrices Mm do not depend on n. Prove that if p - f0 is prime and 
n = (p − 1)/2 then 

−1n v2n ≡ V0M1 · · · M2n mod (2n + 1). 
fn 
0 

nNow v = [f2
n
n−2, f2

n
n−1, f

n ], so we can use this to compute Hp(Ep) ≡ fn mod p for2n 2n 2n 
all good primes p = 2n + 1 that do not divide f0 using the cubic f(x) = x3 + Ax + B 
defining E (so f0 = B, f1 = A, f2 = 0, f3 = 1). 
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Note that we regard A and B as fixed relative to N , so like the prime p ≤ 13 we 
could use brute force (or Schoof’s algorithm) to handle primes p|B. 
Now comes the second key to obtaining a quasi-linear running time, which is to use 

a recursive strategy for computing the matrix products M1 · · · M2n mod (2n + 1). At 
first glance this seems hard, since the modulus is changing with n. But we will take a 

∈ Zd×drecursive approach that allows for more general moduli. Let M1, . . . ,MN be a 
sequence of integer matrices and let m1, . . . ,mN ∈ Z≥1 be a sequence of integer moduli. 
For k = 1, . . . , N define the reduced partial products 

Ck := M1 · · · Mk−1 mod mk 

(the matrix MN is never used and could be omitted). 

(f) Assume N is a power of 2. Show how to reduce the problem of computing C1, . . . , CN 

to a problem involving N/2 integer matrices and N/2 integer moduli where the total 
number of bits involved is essentially the same (you can view d as a constant). 

(g) Analyze the complexity of the recursive algorithm given by (f) under the assumption 
that the integers appearing in the matrices Mk and the moduli mk all have bit-sizes 
bounded by O(log N). Your bound should be quasi-linear in N . By the prime 
number theorem there are approximately N/ log N primes p ≤ N . What is the 
average running time of your algorithm as a function of log p? 

(h) Let A = 42 and let B be the least integer greater than or equal to the last 4 digits 
of your student ID such that Δ(E) = 4A3 + 27B2 6= 0. Using the matrices defined 
in (e) and the moduli mk defined by (

k if k > 13 is a prime not dividing B or Δ(E), 
mk = 

1 otherwise, 

use the recursive algorithm in (f) to compute the Frobenius traces ap for primes p in 
the interval (13, N ] not dividing B or Δ(E), where N = 2k with k = 10, 11, . . . , 15. 
For each value of N , report the sum of the traces, along with the running time of 
your algorithm. 

Problem 3. The probability of `-torsion (50 points) 

Let ` be a prime. In this problem you will determine the probability that a random1 

elliptic curve E/Fp has an Fp-point of order `, where p is either a fixed prime much 
larger than `, or a prime varying over some large interval. Let π = πE be the Frobenius 
endomorphism of E, and let π` ∈ GL2(F`) denote the matrix corresponding to the action 
of the Frobenius endomorphism of E on the `-torsion subgroup E[`] with respect to some 
chosen basis (here we have identified F` with Z/`Z). The matrix π` is only defined up 
to conjugacy, since it depends on the choice of basis, but its trace tr π` = tr π mod ` 
and det π` = deg π = p mod ` are uniquely determined. We will make the heuristic 
assumption that π` is uniformly distributed over GL2(F`) as E varies over elliptic curves 
defined over Fp and p varies over integers in some large interval (one can prove that the 
distribution of π` converges to the uniform distribution on GL2(F`) as p →∞). 

1There are several ways to vary the random elliptic curve E/Fp. We will just pick curve coefficients 
A and B at random and ignore the negligible number of cases where the discriminant is 0. 
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(a) Determine the probability that E(Fp)[`] = E[`], both for a fixed p (in which case the 
answer will depend on p mod `), and for p varying over some large interval (assume 
every possible value of p mod ` occurs equally often). 

Use your answer to derive a heuristic estimate for the probability that E(Fp) is cyclic, 
for large p, by estimating the probability that E(Fp)[`] =6 E[`] for all `, assuming 
that these probabilities are independent.2 Use Sage to compute the product of these 
probabilities for primes ` bounded by 50, 100, 200, 500, and then given an estimate 
that you believe is accurate to at least 4 decimal places for all sufficiently large p. 

Now test your heuristic estimate using the following Sage script 

cnt=0 
for i in range(0,1000): 

p=random_prime(2ˆ20,2ˆ19); F=GF(p) 
A=F.random_element(); B=F.random_element() 

if EllipticCurve([A,B]).abelian_group().is_cyclic(): 
cnt += 1 

print cnt/1000.0 

In the unlikely event that you stumble upon a singular curve, simply rerun the test. 
Run this script three times (be patient, it may take a few minutes), and compare 
the results to your estimate. 

(b) Show that a necessary and sufficient condition for E(Fp)[`] =6 {0} is 

tr π` ≡ det π` + 1 (mod `). 

(c) Under our heuristic assumption, to determine the probability that E(Fp) contains 
a point of order `, we just need to count the matrices π` in GL2(F`) that satisfy 
this condition. Your task is to derive a combinatorial formula for this probability as 
a rational function in `. Do this by summing over the possible values of det π`, so 
that you can also compute the probability for any fixed value of p, which determines 
det π` ≡ p mod `. For each nonzero value of d = det π` ∈ F`, you want to count the 
number of matrices in GL2(F`) that have determinant d and trace d + 1. 

As a warm-up, for ` = 3 use Sage to count the number of matrices π` ∈ GL2(F3) 
with trace d + 1 for d = 1 and d = 2. You can then compute the probability of 
`-torsion for a fixed p ≡ 1 mod 3 or p ≡ 2 mod 3, and also the average probability 
for varying p by averaging over the 2 possible values of d = det π` ≡ p mod `. 

You can solve this problem with purely elementary methods, but if you know a 
little representation theory you may find it helpful to consult the character table 
for GL2(F`) (be sure to list your sources). Assume initially that ` is odd, and after 
obtaining your formula, verify that it also works when ` = 2. 

(d) For ` = 3, 5, 7 do the following: Pick two random primes p1, p2 ∈ [229 , 230], with 
p1 ≡ 1 mod ` and p2 6≡ 1 mod `, and for each prime generate 1000 random elliptic 
curves E/Fp. Count how often #E(Fp) is divisible by `, and compare this with the 
value predicted by the formulas you derived in part (c). 

2This assumption is false, but the extent to which it is false becomes negligible as p → ∞. 
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Problem 4. Fast order algorithms (50 points) 

Let α be an element of a generic group G, written additively. Let N be a positive integer 
e1 erfor which Nα = 0, and let p1 · · · pr be the prime factorization of N . An algorithm 

that computes the order of α given N and its prime factorization is known as a fast 
order algorithm. It’s fast because the knowledge of N and its factorization allows the 
algorithm to run in polynomial time (polynomial in n = log N); determining the order 
of α without being given N provably takes exponential time. 
The näıve fast order algorithm given in class is rather inefficient. This is irrelevant in 

the context of computing the order of a point in #E(Fq) with the baby-steps giant-steps 
method; the complexity is dominated by the time to determine N . But this is not the 
case in every application. In this problem you will analyze two more efficient approaches. 
When giving time complexity bounds for generic group algorithms, we simply count 

group operations, since these are assumed to dominate the computation (so integer 
arithmetic costs nothing). Space complexity is measured by counting the maximum 
number of group elements that the algorithm must store simultaneously, but for this 
problem we will just be concerned with time complexity. You may use the fact that the 
maximum number of distinct primes dividing an integer N is bounded by O(n/ log n), 
where n = log N , which follows from the prime number theorem. All your complexity 
bounds should be specified in terms of n. 

(a) The fast order algorithm given in class begins by initializing m = N and then for 
each prime pi|N it repeatedly replaces m by m/pi so long as pi|m and (m/pi)α = 0. 
Analyze the time complexity of this algorithm in the worst case, and give separate 
asymptotic bounds for inputs of the form 2k and p1 · · · pk. 

(b) Consider an alternative algorithm that first computes αi = (N/pei )α for 1 ≤ i ≤ r,i 

and then determines the least di ≥ 0 for which p di αi = 0 by computing the sequence i 

αi, piαi, p 2 
i αi, . . . , p di 

i αi = 0, 

where each term is obtained from the previous via a scalar multiplication by pi.Q
Show that the order of α is i p di . Analyze the time complexity of this algorithm i 
in the worst case, and give separate asymptotic bounds for inputs of the form 2k 

and p1 · · · pk. 

(c) Consider a third algorithm that uses a recursive divide-and-conquer strategy. In 
the base case r = 1, so N = pk is a prime power and it computes the sequence 

dα, pα, p2α, . . . , pdα = 0 as above and returns p . For r > 1 it sets s = br/2c and 
N1N2 

e1 es+1 erputs N = with N1 = p · · · pes and N2 = p · · · p . It then recursively 1 s s+1 r 
computes m1 = |N1α| and m2 = |N2α| and outputs m1m2. 

(i) Prove that this algorithm is correct. 

(ii) Analyze the time complexity of this algorithm in the worst case, and give 
separate asymptotic bounds for inputs of the form 2k and p1 · · · pk. 

Problem 5. A Las Vegas algorithm to compute #E(Fp) (50 points) 

Implement a Las Vegas algorithm to compute #E(Fp), as described in class. Use Sage’s 
built-in functions for generating random points on an elliptic curve, for adding points 
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on an elliptic curve, and for performing scalar multiplication, but write your own code 
for performing the baby-steps giant-steps search and the fast order computation. When 
implementing the search, you will want to use a python dictionary to store the baby steps; 
python will automatically create a hash table to facilitate fast lookups (alternatively you 
can do a sort and match yourself, just be sure to avoid a linear search). √ √ 
In the code below, H(p) = [p +1 − 2 p, p +1+2 p] denotes the Hasse interval. The 

following algorithm to compute #E(Fp) was given in class: 

Input: An elliptic curve E/Fp, where p > 229 is prime. 
Output: The cardinality of E(Fp). 

1. Find a random non-square element d ∈ Fp and use it to compute the equation of 
a quadratic twist E1 of E0 = E over Fp. 

2. Set N0 = N1 = 1 and i = 0 (the index i is used to alternate between E0 and E1). 

3. While neither N0 nor N1 has a unique multiple in H(p): 

(a) Pick a random point P on Ei. 

(b) Use a baby-steps giant-steps search to find a multiple M of |P | in H(p). 
(c) Compute the prime factorization of M using Sage’s factor function. 

(d) Compute m = |P | using any of the fast order algorithms from Problem 4. 

(e) Set Ni = lcm(m, Ni) and set i = 1 − i. 

4. If N0 has a unique multiple M in H(p) then return M , otherwise return 2p+2−M , 
where M is the unique multiple of N1 in H(p). 

(a) By modifying part (b) of step 3, give an alternative method for determining m = |P |
that does not require steps (c) and (d). 

2(b) Let E be the elliptic curve y = x3 − 35x − 98 over Fp with p = 4657. Run your 
algorithm on E/Fp and record the values of Ni, M , and m that are obtained as the 
algorithm progresses. 

(c) For k = 20, 40, 60, 80, pick a random prime p in the interval [2k−1 , 2k] (using Sage’s 
random prime function with the lbound parameter). Record the time it takes for 

2you program to compute #E(Fp) for the elliptic curve y = x3 + 314159x + 271828 
for each of these primes and list these timings in a table. 

The timings will vary depending on your exact implementation and the machine you 
are running on, but you should be able to see an O(p1/4) growth rate for large p; the 
k = 20 and k = 40 cases will be too quick too see this, but you should see the times go 
up by a factor of roughly 220/4 = 32 as you move from a 40-bit to a 60-bit and then an 
80-bit prime. As ball park figures to shoot for, the cases k = 20, 40 should both take 
less than a second, the k = 60 case should take a few tens of seconds (under ten if your 

1/4)code is tight); the k = 80 case may take several minutes. If you are not seeing O(p
growth it likely means that you are inadvertently doing a linear search of the baby steps 
rather than a table lookup; use a python dictionary to store baby steps and make sure 
you access it correctly (use “giant in babys” not “giant in babys.keys()”; 
the latter will do a linear search). You can use the sage function cputime() to time 
specific sections of your code. 
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Problem 6. Schoof’s algorithm (50 points) 

In this problem you will analyze the complexity of Schoof’s algorithm, as described in 
Lecture 9 (Algorithms 9.1 and 9.3) and implemented in this Sage worksheet. In your 
complexity bounds, use M(m) to denote the complexity of multiplying two m-bit integers. 
You may wish to recall that the complexity of multiplying polynomials in Fp[x] of degree d 
is O(M(d log p)), provided that log d = O(log p) (in Schoof’s algorithm, ` = O(log p), 
so this certainly applies). Under the same assumption, the complexity of inverting a 
polynomial of degree O(d) modulo a polynomial of degree d is O(M(d log p) log d). 

(a) Analyze the time complexity of computing t` as described in Algorithm 9.3 of the 
lecture notes and implemented in the trace mod function in the worksheet. Give 
separate bounds for each of the four non-trivial steps in Algorithm 9.3 as well as 
overall bounds for the entire algorithm. Express your bounds in terms of ` and 
n = log p, using M(m) to denote the cost of multiplying two m-bit integers. 

(b) Analyze the total time complexity of Schoof’s algorithm, as described in Algo-
rithm 9.1 of the lectures notes and implemented in the Schoof function of this 
Sage worksheet, as a function of n = log p. Give your answer in three forms, first 
using M(m) to express the cost of multiplying m-bit integers, then after plugging in 
the näıve bound M(m) = O(m2) or the Schönhage-Strassen bound for FFT-based 
multiplication M(m) = O(m log m log log m). 

(c) In your answer to part (a), you should have found that the time complexity bound 
for one particular step is strictly worse than any of the other steps of Algorithm 9.3. 
Explain how to modify Algorithm 9.3 so that this step no longer strictly dominates 
the asymptotic running time. 

(d) Revise your time complexity estimates in part (b) to reflect part (c). 

(e) Analyze the space complexity of Schoof’s algorithm as a function of n, both before 
and after your optimization in part (c). 

Problem 7. Survey 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-
blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Estimate the 
amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
Problem 5 
Problem 6 

Also, please rate each of the following lectures that you attended, according to the quality 
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material (1=“old hat”, 10=“all new”). 
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Date Lecture Topic Material Presentation Pace Novelty 
3/5 Point counting 
3/7 Schoof’s algorithm 

Please record any additional comments you have on the problem sets or lectures, in 
particular, ways in which they might be improved. 

9 



  
 

 
  

            

MIT OpenCourseWare 
https://ocw.mit.edu 

18.783Elliptic Curves 
Spring 2017 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms



