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2.7. First properties of exact module categories. 

Lemma 2.7.1. Let M be an exact module category over finite multi-
tensor category C. Then the category M has enough projective objects. 

Proof. Let P0 denote the projective cover of the unit object in C. Then 
the natural map P0 ⊗ X 1 ⊗ X � X is surjective for any X ∈ M →
since ⊗ is exact. Also P0 ⊗ X is projective by definition of an exact 
module category. � 

Corollary 2.7.2. Assume that an exact module category M over C
has finitely many isomorphism classes of simple objects. Then M is 
finite. 

Lemma 2.7.3. Let M be an exact module category over C. Let P ∈ C 
be projective and X ∈M. Then P ⊗ X is injective. 

Proof. The functor Hom( , P ⊗ X) is isomorphic to the functor•
Hom(P ∗ ⊗ •, X). The object P ∗ is projective by Proposition 1.47.3. 
Thus for any exact sequence 

0 Y1 → Y2 → Y3 → 0→ 

the sequence 

0 → P ∗ ⊗ Y1 → P ∗ ⊗ Y2 → P ∗ ⊗ Y3 → 0 

splits, and hence the functor Hom(P ∗ ⊗ •, X) is exact. The Lemma is 
proved. � 

Corollary 2.7.4. In the category M any projective object is injective 
and vice versa. 

Proof. Any projective object X of M is a direct summand of the object 
of the form P0 ⊗ X and thus is injective. � 

Remark 2.7.5. A finite abelian category A is called a quasi-Frobenius 
category if any projective object of A is injective and vice versa. Thus 
any exact module category over a finite multitensor category (in par
ticular, any finite multitensor category itself) is a quasi-Frobenius cat
egory. It is well known that any object of a quasi-Frobenius category 
admitting a finite projective resolution is projective (indeed, the last 
nonzero arrow of this resolution is an embedding of projective (= injec
tive) modules and therefore is an inclusion of a direct summand. Hence 
the resolution can be replaced by a shorter one and by induction we 
are done). Thus any quasi-Frobenius category is either semisimple or 
of infinite homological dimension. 
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Let Irr(M) denote the set of (isomorphism classes of) simple objects 
in M. Let us introduce the following relation on Irr(M): two objects 
X, Y ∈ Irr(M) are related if Y appears as a subquotient of L ⊗ X for 
some L ∈ C. 

Lemma 2.7.6. The relation above is reflexive, symmetric and transi
tive. 

Proof. Since 1 ⊗ X = X we have the reflexivity. Let X, Y, Z ∈ Irr(M) 
and L1, L2 ∈ C. If Y is a subquotient of L1 ⊗ X and Z is a subquotient 
of L2 ⊗Y then Z is a subquotient of (L2 ⊗L1)⊗X (since ⊗ is exact), so 
we get the transitivity. Now assume that Y is a subquotient of L ⊗ X. 
Then the projective cover P (Y ) of Y is a direct summand of P0 ⊗L⊗X; 
hence there exists S ∈ C such that Hom(S ⊗ X, Y ) =� 0 (for example 
S = P0 ⊗ L). Thus Hom(X, S∗ ⊗ Y ) = Hom(S ⊗ X, Y ) = 0 and hence �
X is a subobject of S∗ ⊗ Y . Consequently our equivalence relation is 
symmetric. � 

Thus our relation is an equivalence relation. Hence Irr(M) is par�� 
titioned into equivalence classes, Irr(M) = i∈I Irr(M)i. For an 
equivalence class i ∈ I let Mi denote the full subcategory of M con
sisting of objects whose all simple subquotients lie in Irr(M)i. Clearly, 
Mi is a module subcategory of M. 

Proposition 2.7.7. The module categories Mi are exact. The category 
M is the direct sum of its module subcategories Mi. 

Proof. For any X ∈ Irr(M)i its projective cover is a direct summand 
of P0 ⊗ X and hence lies in the category Mi. Hence the category M
is the direct sum of its subcategories Mi, and Mi are exact. � 

A crucial property of exact module categories is the following 

Proposition 2.7.8. Let M1 and M2 be two module categories over 
C. Assume that M1 is exact. Then any additive module functor F : 
M1 →M2 is exact. 

Proof. Let 0 X Y Z 0 be an exact sequence in M1. Assume→ → → →
that the sequence 0 F (X) F (Y ) F (Z) 0 is not exact. Then → → → →
the sequence 0 P ⊗ F (X) P ⊗ F (Y ) P ⊗ F (Z) 0 is also → → → →
non-exact for any nonzero object P ∈ C since the functor P ⊗ • is 
exact and P ⊗ X = 0 implies X = 0. In particular we can take P to be 
projective. But then the sequence 0 P ⊗X P ⊗Y P ⊗Z 0 is → → → →
exact and split and hence the sequence 0 F (P ⊗ X) F (P ⊗ Y )→ → →
F (P ⊗ Z) → 0 is exact and we get a contradiction. � 
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Remark 2.7.9. We will see later that this Proposition actually char
acterizes exact module categories. 

2.8. Z+−modules. Recall that for any multitensor category C its Grothendieck 
ring Gr(C) is naturally a Z+−ring. 

Definition 2.8.1. Let K be a Z+−ring with basis {bi}. A Z+−module 
over K is a K−module M with fixed Z−basis {ml} such that all the 
structure constants ail

k (defined by the equality biml = k ail
k mk) are 

nonnegative integers. 

The direct sum of Z+−modules is also a Z+−module whose basis is 
a union of bases of summands. We say that Z+−module is indecom
posable if it is not isomorphic to a nontrivial direct sum. 

Let M be a finite module category over C. By definition, the Grothendieck 
group Gr(M) with the basis given by the isomorphism classes of sim
ple objects is a Z+−module over Gr(C). Obviously, the direct sum of 
module categories corresponds to the direct sum of Z+−modules. 

Exercise 2.8.2. Construct an example of an indecomposable module 
category M over C such that Gr(M) is not indecomposable over Gr(C). 

Note, however, that, as follows immediately from Proposition 2.7.7, 
for an indecomposable exact module category M the Z+−module Gr(M) 
is indecomposable over Gr(C). In fact, even more is true. 

Definition 2.8.3. A Z+−module M over a Z+−ring K is called irre
ducible if it has no proper Z+−submodules (in other words, the Z−span 
of any proper subset of the basis of M is not a K−submodule). 

Exercise 2.8.4. Give an example of Z+−module which is not irre
ducible but is indecomposable. 

Lemma 2.8.5. Let M be an indecomposable exact module category 
over C. Then Gr(M) is an irreducible Z+−module over Gr(C). 

Exercise 2.8.6. Prove this Lemma. 

Proposition 2.8.7. Let K be a based ring of finite rank over Z. Then 
there exists only finitely many irreducible Z+−modules over K. 

Proof. First of all, it is clear that an irreducible Z+−module M over 
K is of finite rank over Z. Let {ml}l∈L be the basis of M . Let us 
consider an element b := bi∈B bi of K. Let b2 = i nibi and let 
N = maxbi∈B ni (N exists since B is finite). For any l ∈ L let bml = 

k∈L d
k
l mk and let dl := k∈L d

k
l > 0. Let l0 ∈ I be such that d := dl0 

equals minl∈L dl. Let b2ml0 = l∈L clml. Calculating b2ml0 in two ways 
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— as (b2)ml0 and as b(bml0 ), and computing the sum of the coefficients, 
we have:


Nd ≥ cl ≥ d2 

l 

and consequently d ≤ N . So there are only finitely many possibilities 
for |L|, values of ci and consequently for expansions biml (since each 
ml appears in bml0 ). The Proposition is proved. 

In particular, for a given finite multitensor category C there are only 

⏐⏐� 

finitely many Z+−modules over Gr(C) which are of the form Gr(M) 
where M is an indecomposable exact module category over C. 

Exercise 2.8.8. (a) Classify irreducible Z+−modules over ZG (An
swer: such modules are in bijection with subgroups of G up to conju
gacy). 
(b) Classify irreducible Z+−modules over Gr(Rep(S3)) (consider all 

⏐⏐�

the cases: chark = 2, 3, chark = 2, chark = 3). 
(c) Classify irreducible Z+−modules over the Yang-Lee and Ising 

based rings. 

Now we can suggest an approach to the classification of exact mod
ule categories over C: first classify irreducible Z+−modules over Gr(C) 
(this is a combinatorial part), and then try to find all possible cate
gorifications of a given Z+−module (this is a categorical part). Both 
these problems are quite nontrivial and interesting. We will see later 
some nontrivial solutions to this. 

2.9. Algebras in categories. 

Definition 2.9.1. An algebra in a multitensor category C is a triple 
(A, m, u) where A is an object of C, and m, u are morphisms (called 
multiplication and unit morphisms) m : A ⊗ A A, u : 1 A such → →
that the following axioms are satisfied: 

1. Associativity: the following diagram commutes: 

A ⊗ A ⊗ A 
m⊗id −−−→ A ⊗ A 

(2.9.1) id⊗m m 

A ⊗ A −−−→ A 
m 

2. Unit: The morphisms A → 1 ⊗ A → A ⊗ A → A and A →
A ⊗ 1 → A ⊗ A → A are both equal to IdA. 
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Of course, in the case when C = Vec, we get definition of an asso
ciative algebra with unit, and in the case C = Vec we get the definition 
of a finite dimensional associative algebra with unit. 

Remark 2.9.2. If C is not closed under direct limits (e.g., C is a 
multitensor category), one can generalize the above definition, allowing 
A to be an ind-object (i.e., “infinite dimensional”). However, we will 
mostly deal with algebras honestly in C (i.e., “finite dimensional”), and 
will make this assumption unless otherwise specified. 

Example 2.9.3. 1. 1 is an algebra. 
2. The algebra of functions Fun(G) on a finite group G (with values 

in the ground field k) is an algebra in Rep(G) (where G acts on itself 
by left multiplication). 

3. Algebras in VecG is the same thing as G-graded algebras. In 
particular, if H is a subgroup of G then the group algebra C[H] is an 
algebra in VecG. 

4. More generally, let ω be a 3-cocycle on G with values in k×, and ψ 
be a 2-cochain of G such that ω = dψ. Then one can define the twisted 
group algebra Cψ[H] in Vecω , which is ⊕h∈H h as an object of Vecω 

G G, 
and the multiplication h ⊗ h� → hh� is the operation of multiplication 
by ψ(h, h�). If ω = 1 (i.e., ψ is a 2-cocycle), the twisted group algebra 
is associative in the usual sense, and is a familiar object from group 
theory. However, if ω is nontrivial, this algebra is not associative in the 
usual sense, but is only associative in the tensor category Vecω , which, G

as we know, does not admit fiber functors. 

Example 2.9.4. Let C be a multitensor category and X ∈ C. Then the 
object A = X ⊗ X∗ has a natural structure of an algebra with unit in 
C given by the coevaluation morphism and multiplication Id ⊗evX ⊗ Id. 
In particular for X = 1 we get a (trivial) structure of an algebra on 
A = 1. 

We leave it to the reader to define subalgebras, homomorphisms, 
ideals etc in the categorical setting. 

Now we define modules over algebras: 

Definition 2.9.5. A (right) module over an algebra (A, m, u) (or just 
an A−module) is a pair (M, p), where M ∈ C and p is a morphism 
M ⊗ A M such that the following axioms are satisfied: →
1. The following diagram commutes: 
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p⊗id −−−→ M ⊗ A ⏐⏐� 

M ⊗ A ⊗ A 

(2.9.2) id⊗m 

⏐⏐� p 

M ⊗ A −−−→ M 
p 

2. The composition M M ⊗ 1 M ⊗ A M is the identity. → → → 

The definition of a left module is entirely analogous. 

Definition 2.9.6. The homomorphism between two A−modules (M1, p1) 

⏐⏐� 

and (M2, p2) is a morphism l ∈ HomC(M1,M2) such that the following 
diagram commutes: 

M1 ⊗ A 
l⊗id −−−→ M2 ⊗ A ⏐⏐�(2.9.3) p1 p2 

l 
M1 −−−→ M2 

Obviously, homomorphisms form a subspace of the the vector space 
Hom(M1,M2). We will denote this subspace by HomA(M1,M2). It is 
easy to see that a composition of homomorphisms is a homomorphism. 
Thus A−modules form a category ModC (A). 

Exercise 2.9.7. Check that ModC(A) is an abelian category. 

The following observations relate the categories ModC (A) and mod
ule categories: 

Exercise 2.9.8. For any A−module (M, p) and any X ∈ C the pair 
(X ⊗ M, id ⊗ p) is again an A−module. 

Thus we have a functor ⊗̃ : C × ModC(A) → ModC (A). 

Exercise 2.9.9. For any A−module (M, p) and any X, Y ∈ C the 
associativity morphism aX,Y,M : (X ⊗ Y ) ⊗ M X ⊗ (Y ⊗ M) is an →
isomorphism of A−modules. Similarly the unit morphism 1 ⊗ M M→
is an isomorphism of A−modules. 

This exercise defines associativity and unit constraints ã, ̃l for the 
category ModC (A). 

Proposition 2.9.10. The category ModC (A) together with functor ⊗̃
and associativity and unit constraints ã, l̃ is a left module category over 
C. 
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Exercise 2.9.11. Prove this Proposition. 

The following statement is very useful: 

Lemma 2.9.12. For any X we have a canonical isomorphism ∈ C 
HomA(X ⊗ A, M) = Hom(X, M). 

Exercise 2.9.13. Prove this Lemma. 

Exercise 2.9.14. Is it true that any object of ModC (A) is of the form 
X ⊗ A for some X ∈ C? 

Exercise 2.9.15. Show that for any M ∈ ModC (A) there exists X ∈ C 
and a surjection X ⊗ A M (namely, X = M regarded as an object →
of C). 

Exercise 2.9.16. Assume that the category C has enough projective 
objects. Then the category ModC(A) has enough projective objects. 

Exercise 2.9.17. Assume that the category C is finite. Then the 
category ModC (A) is finite. 

Thus we get a general construction of module categories from al
gebras in the category C. Not any module category over C is of the 
form ModC (A): for C = Vec the module category of all (possibly in
finite dimensional) vector spaces (see Example 2.5.11) is not of this 
form. But note that for C = Vec any finite module category is of the 
form ModC (A) (just because every finite abelian category is equivalent 
to Mod(A) for some finite dimensional algebra A). We will show later 
that all finite module categories over a finite C are of the form ModC(A) 
for a suitable A. But of course different algebras A can give rise to the 
same module categories. 

Definition 2.9.18. We say that two algebras A and B in C are Morita 
equivalent if the module categories ModC (A) and ModC (B) are module 
equivalent. 

Note that in the case C = Vec this definition specializes to the usual 
notion of Morita equivalence of finite dimensional algebras. 

Example 2.9.19. We will see later that all the algebras from Exam
ple 2.9.4 are Morita equivalent; moreover any algebra which is Morita 
equivalent to A = 1 is of the form X ⊗ X∗ for a suitable X ∈ C. 

Not any module category of the form ModC (A) is exact: 

Exercise 2.9.20. Give an example of module category of the form 
ModC (A) which is not exact. 
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Thus we are going to use the following 

Definition 2.9.21. An algebra A in the category C is called exact if 
the module category ModC (A) is exact. 

It is obvious from the definition that the exactness is invariant under 
Morita equivalence. 

We will need the notion of a tensor product over an algebra A ∈ C. 

Definition 2.9.22. Let A be an algebra in C and let (M, pM ) be a right 
A−module, and (N, pN ) be a left A−module. A tensor product over 
A, M ⊗A N ∈ C, is the quotient of M ⊗ N by the image of morphism 
pM ⊗ id − id ⊗ pN : M ⊗ A ⊗ N → M ⊗ N . 

Exercise 2.9.23. Show that the functor ⊗A is right exact in each 
variable (that is, for fixed M, N , the functors M ⊗A • and • ⊗A N are 
right exact). 

Definition 2.9.24. Let A, B be two algebras in C. An A−B−bimodule 
is a triple (M, p, q) where M ∈ C, p ∈ Hom(A ⊗ M, M), q ∈ Hom(M ⊗
B, M) such that 

1. The pair (M, p) is a left A−module. 
2. The pair (M, q) is a right B−module. 
3. The morphisms q (p⊗id) and p (id⊗q) from Hom(A⊗M ⊗B, M)◦ ◦

coincide. 

Remark 2.9.25. Note that in the categorical setting, we cannot define 
(A, B)-bimodules as modules over A ⊗ Bop, since the algebra A ⊗ Bop 

is, in general, not defined. 

We will usually say “A−bimodule” instead of “A − A−bimodule”. 

Exercise 2.9.26. Let M be a right A−module, N be an A−B−bimodule 
and P be a left B−module. Construct the associativity morphism 
(M ⊗A N) ⊗A P M ⊗A (N ⊗A P ). State and prove the pentagon →
relation for this morphism. 

2.10. Internal Hom. In this section we assume that the category C
is finite. This is not strictly necessary but simplifies the exposition. 

An important technical tool in the study of module categories is 
the notion of internal Hom. Let M be a module category over C and 
M1,M2 ∈M. Consider the functor Hom(•⊗M1,M2) from the category 
C to the category of vector spaces. This functor is left exact and thus 
is representable 

Remark 2.10.1. If we do not assume that the category C is finite, the 
functor above is still representable, but by an ind-object of C. Working 
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with ind-objects, one can extend the theory below to this more general 
case. We leave this for an interested reader. 

Definition 2.10.2. The internal Hom Hom(M1,M2) is an object of C
representing the functor Hom(• ⊗ M1,M2). 

Note that by Yoneda’s Lemma (M1,M2) �→ Hom(M1,M2) is a bi
functor. 

Exercise 2.10.3. Show that the functor Hom(•, ) is left exact in both •
variables. 

Lemma 2.10.4. There are canonical isomorphims 

(1) Hom(X ⊗ M1,M2) ∼= Hom(X, Hom(M1,M2)), 
(2) Hom(M1, X ⊗ M2) ∼= Hom(1, X ⊗ Hom(M1,M2)), 
(3) Hom(X ⊗ M1,M2) ∼= Hom(M1,M2) ⊗ X∗, 
(4) Hom(M1, X ⊗ M2) ∼= X ⊗ Hom(M1,M2). 

Proof. Formula (1) is just the definition of Hom(M1,M2), and isomor
phism (2) is the composition 

Hom(M1, X ⊗ M2) ∼= Hom(X∗ ⊗ M1,M2) =


= Hom(X∗, Hom(M1,M2)) ∼
= Hom(1, X ⊗ Hom(M1,M2)). 

We get isomorphism (3) from the calculation 

Hom(Y, Hom(X⊗M1,M2)) = Hom(Y ⊗(X⊗M1),M2) = Hom((Y ⊗X)⊗M1,M2) = 

= Hom(Y ⊗ X, Hom(M1,M2)) = Hom(Y, Hom(M1,M2) ⊗ X∗), 

and isomorphism (4) from the calculation 

Hom(Y, Hom(M1, X ⊗ M2)) = Hom(Y ⊗ M1, X ⊗ M2) =


= Hom(X∗ ⊗ (Y ⊗ M1),M2) = Hom((X∗ ⊗ Y ) ⊗ M1,M2) =


= Hom(X∗ ⊗ Y, Hom(M1,M2)) = Hom(Y, X ⊗ Hom(M1,M2)).


Corollary 2.10.5. (1) For a fixed M1, the assignment M2 �→ Hom(M1,M2) 
is a module functor M→ C; 

(2) For a fixed M2, the assignment M1 �→ Hom(M1,M2) is a module 
functor M→ Cop. 

Proof. This follows from the isomorphisms (4) and (3) of Lemma 2.10.4. 

Corollary 2.10.5 and Proposition 2.7.8 imply 

Corollary 2.10.6. Assume that M is an exact module category. Then 
the functor Hom(•, •) is exact in each variable. 
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The mere definition of the internal Hom allows us to prove the con
verse to Proposition 2.7.8: 

Proposition 2.10.7. (1) Suppose that for a module category M over 
C, the bifunctor Hom is exact in the second variable, i.e., for any object 
N ∈M the functor Hom(N, ) : M→ C is exact. Then M is exact. •

(2) Let M1, M2 be two nonzero module categories over C. Assume 
that any module functor from M1 to M2 is exact. Then the module 
category M1 is exact. 

Proof. (1) Let P ∈ C be any projective object. Then for any N ∈ M 
one has Hom(P ⊗ N, ) = Hom(P, Hom(N, )), and thus the functor 
Hom(P ⊗ N, ) is exact. By the definition of an exact module category, •
we are done. 

(2) First we claim that under our assumptions any module functor 
F ∈ FunC(M1, C) is exact. Indeed, let 0 =� M ∈ M2. The functor 
F ( )⊗M ∈ FunC(M1, M2) is exact. Since •⊗M is exact, and X⊗M = •
0 implies X = 0, we see that F is exact. 

In particular, we see that for any object N the functor ∈ M1, 
Hom(N, •) : M1 → C is exact, since it is a module functor. Now 
(2) follows from (1). � 

Example 2.10.8. It is instructive to calculate Hom for the category 
ModC (A). Let M, N ∈ ModC(A). We leave it to the reader as an 
exercise to check that Hom(M, N) = (M ⊗A 

∗N)∗ (note that ∗N has 
a natural structure of a left A−module). One deduces from this de
scription of Hom that exactness of A is equivalent to biexactness of the 
functor ⊗A. 

For two objects M1,M2 of a module category M we have the canon
ical morphism 

evM1,M2 : Hom(M1,M2) ⊗ M1 → M2 

obtained as the image of Id under the isomorphism 

Hom(Hom(M1,M2), Hom(M1,M2)) ∼= Hom(Hom(M1,M2) ⊗ M1,M2). 

Let M1,M2,M3 be three objects of M. Then there is a canonical 
composition morphism 

(Hom(M2,M3)⊗Hom(M1,M2))⊗M1 
∼= Hom(M2,M3)⊗(Hom(M1,M2)⊗M1) 

Id ⊗evM1,M2 evM2,M3 −→ Hom(M2,M3) ⊗ M2 −→ M3 

which produces the multipication morphism 

Hom(M2,M3) ⊗ Hom(M1,M2) Hom(M1,M3).→ 
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Exercise 2.10.9. Check that this multiplication is associative and 
compatible with the isomorphisms of Lemma 2.10.4. 
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