2.7. First properties of exact module categories.

Lemma 2.7.1. Let \mathcal{M} be an exact module category over finite multitensor category \mathcal{C}. Then the category \mathcal{M} has enough projective objects.

Proof. Let P_{0} denote the projective cover of the unit object in \mathcal{C}. Then the natural map $P_{0} \otimes X \rightarrow \mathbf{1} \otimes X \simeq X$ is surjective for any $X \in \mathcal{M}$ since \otimes is exact. Also $P_{0} \otimes X$ is projective by definition of an exact module category.

Corollary 2.7.2. Assume that an exact module category \mathcal{M} over \mathcal{C} has finitely many isomorphism classes of simple objects. Then \mathcal{M} is finite.

Lemma 2.7.3. Let \mathcal{M} be an exact module category over \mathcal{C}. Let $P \in \mathcal{C}$ be projective and $X \in \mathcal{M}$. Then $P \otimes X$ is injective.

Proof. The functor $\operatorname{Hom}(\bullet, P \otimes X)$ is isomorphic to the functor $\operatorname{Hom}\left(P^{*} \otimes \bullet, X\right)$. The object P^{*} is projective by Proposition 1.47.3. Thus for any exact sequence

$$
0 \rightarrow Y_{1} \rightarrow Y_{2} \rightarrow Y_{3} \rightarrow 0
$$

the sequence

$$
0 \rightarrow P^{*} \otimes Y_{1} \rightarrow P^{*} \otimes Y_{2} \rightarrow P^{*} \otimes Y_{3} \rightarrow 0
$$

splits, and hence the functor $\operatorname{Hom}\left(P^{*} \otimes \bullet, X\right)$ is exact. The Lemma is proved.

Corollary 2.7.4. In the category \mathcal{M} any projective object is injective and vice versa.

Proof. Any projective object X of \mathcal{M} is a direct summand of the object of the form $P_{0} \otimes X$ and thus is injective.

Remark 2.7.5. A finite abelian category \mathcal{A} is called a quasi-Frobenius category if any projective object of \mathcal{A} is injective and vice versa. Thus any exact module category over a finite multitensor category (in particular, any finite multitensor category itself) is a quasi-Frobenius category. It is well known that any object of a quasi-Frobenius category admitting a finite projective resolution is projective (indeed, the last nonzero arrow of this resolution is an embedding of projective (= injective) modules and therefore is an inclusion of a direct summand. Hence the resolution can be replaced by a shorter one and by induction we are done). Thus any quasi-Frobenius category is either semisimple or of infinite homological dimension.

Let $\operatorname{Irr}(\mathcal{M})$ denote the set of (isomorphism classes of) simple objects in \mathcal{M}. Let us introduce the following relation on $\operatorname{Irr}(\mathcal{M})$: two objects $X, Y \in \operatorname{Irr}(\mathcal{M})$ are related if Y appears as a subquotient of $L \otimes X$ for some $L \in \mathcal{C}$.

Lemma 2.7.6. The relation above is reflexive, symmetric and transitive.

Proof. Since $\mathbf{1} \otimes X=X$ we have the reflexivity. Let $X, Y, Z \in \operatorname{Irr}(\mathcal{M})$ and $L_{1}, L_{2} \in \mathcal{C}$. If Y is a subquotient of $L_{1} \otimes X$ and Z is a subquotient of $L_{2} \otimes Y$ then Z is a subquotient of $\left(L_{2} \otimes L_{1}\right) \otimes X$ (since \otimes is exact), so we get the transitivity. Now assume that Y is a subquotient of $L \otimes X$. Then the projective cover $P(Y)$ of Y is a direct summand of $P_{0} \otimes L \otimes X$; hence there exists $S \in \mathcal{C}$ such that $\operatorname{Hom}(S \otimes X, Y) \neq 0$ (for example $\left.S=P_{0} \otimes L\right)$. Thus $\operatorname{Hom}\left(X, S^{*} \otimes Y\right)=\operatorname{Hom}(S \otimes X, Y) \neq 0$ and hence X is a subobject of $S^{*} \otimes Y$. Consequently our equivalence relation is symmetric.

Thus our relation is an equivalence relation. Hence $\operatorname{Irr}(\mathcal{M})$ is partitioned into equivalence classes, $\operatorname{Irr}(\mathcal{M})=\bigsqcup_{i \in I} \operatorname{Irr}(\mathcal{M})_{i}$. For an equivalence class $i \in I$ let \mathcal{M}_{i} denote the full subcategory of \mathcal{M} consisting of objects whose all simple subquotients lie in $\operatorname{Irr}(\mathcal{M})_{i}$. Clearly, \mathcal{M}_{i} is a module subcategory of \mathcal{M}.

Proposition 2.7.7. The module categories \mathcal{M}_{i} are exact. The category \mathcal{M} is the direct sum of its module subcategories \mathcal{M}_{i}.

Proof. For any $X \in \operatorname{Irr}(\mathcal{M})_{i}$ its projective cover is a direct summand of $P_{0} \otimes X$ and hence lies in the category \mathcal{M}_{i}. Hence the category \mathcal{M} is the direct sum of its subcategories \mathcal{M}_{i}, and \mathcal{M}_{i} are exact.

A crucial property of exact module categories is the following
Proposition 2.7.8. Let \mathcal{M}_{1} and \mathcal{M}_{2} be two module categories over \mathcal{C}. Assume that \mathcal{M}_{1} is exact. Then any additive module functor F : $\mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ is exact.

Proof. Let $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be an exact sequence in \mathcal{M}_{1}. Assume that the sequence $0 \rightarrow F(X) \rightarrow F(Y) \rightarrow F(Z) \rightarrow 0$ is not exact. Then the sequence $0 \rightarrow P \otimes F(X) \rightarrow P \otimes F(Y) \rightarrow P \otimes F(Z) \rightarrow 0$ is also non-exact for any nonzero object $P \in \mathcal{C}$ since the functor $P \otimes \bullet$ is exact and $P \otimes X=0$ implies $X=0$. In particular we can take P to be projective. But then the sequence $0 \rightarrow P \otimes X \rightarrow P \otimes Y \rightarrow P \otimes Z \rightarrow 0$ is exact and split and hence the sequence $0 \rightarrow F(P \otimes X) \rightarrow F(P \otimes Y) \rightarrow$ $F(P \otimes Z) \rightarrow 0$ is exact and we get a contradiction.

Remark 2.7.9. We will see later that this Proposition actually characterizes exact module categories.
2.8. $\mathbb{Z}_{+}-$modules. Recall that for any multitensor category \mathcal{C} its Grothendieck ring $\operatorname{Gr}(\mathcal{C})$ is naturally a \mathbb{Z}_{+}-ring.

Definition 2.8.1. Let K be a \mathbb{Z}_{+}-ring with basis $\left\{b_{i}\right\}$. A \mathbb{Z}_{+}-module over K is a K-module M with fixed \mathbb{Z}-basis $\left\{m_{l}\right\}$ such that all the structure constants $a_{i l}^{k}$ (defined by the equality $b_{i} m_{l}=\sum_{k} a_{i l}^{k} m_{k}$) are nonnegative integers.

The direct sum of \mathbb{Z}_{+}- modules is also a \mathbb{Z}_{+}-module whose basis is a union of bases of summands. We say that \mathbb{Z}_{+}-module is indecomposable if it is not isomorphic to a nontrivial direct sum.

Let \mathcal{M} be a finite module category over \mathcal{C}. By definition, the Grothendieck group $\operatorname{Gr}(\mathcal{M})$ with the basis given by the isomorphism classes of simple objects is a $\mathbb{Z}_{+}-$module over $\operatorname{Gr}(\mathcal{C})$. Obviously, the direct sum of module categories corresponds to the direct sum of \mathbb{Z}_{+}-modules.

Exercise 2.8.2. Construct an example of an indecomposable module category \mathcal{M} over \mathcal{C} such that $G r(\mathcal{M})$ is not indecomposable over $\operatorname{Gr}(\mathcal{C})$.

Note, however, that, as follows immediately from Proposition 2.7.7, for an indecomposable exact module category \mathcal{M} the \mathbb{Z}_{+}- module $\operatorname{Gr}(\mathcal{M})$ is indecomposable over $\operatorname{Gr}(\mathcal{C})$. In fact, even more is true.

Definition 2.8.3. A $\mathbb{Z}_{+}-$module M over a $\mathbb{Z}_{+}-$ring K is called irreducible if it has no proper \mathbb{Z}_{+}-submodules (in other words, the \mathbb{Z}-span of any proper subset of the basis of M is not a K-submodule).

Exercise 2.8.4. Give an example of \mathbb{Z}_{+}-module which is not irreducible but is indecomposable.

Lemma 2.8.5. Let \mathcal{M} be an indecomposable exact module category over \mathcal{C}. Then $\operatorname{Gr}(\mathcal{M})$ is an irreducible \mathbb{Z}_{+}-module over $\operatorname{Gr}(\mathcal{C})$.

Exercise 2.8.6. Prove this Lemma.
Proposition 2.8.7. Let K be a based ring of finite rank over \mathbb{Z}. Then there exists only finitely many irreducible \mathbb{Z}_{+}- modules over K.

Proof. First of all, it is clear that an irreducible \mathbb{Z}_{+}-module M over K is of finite rank over \mathbb{Z}. Let $\left\{m_{l}\right\}_{l \in L}$ be the basis of M. Let us consider an element $b:=\sum_{b_{i} \in B} b_{i}$ of K. Let $b^{2}=\sum_{i} n_{i} b_{i}$ and let $N=\max _{b_{i} \in B} n_{i}\left(N\right.$ exists since B is finite). For any $l \in L$ let $b m_{l}=$ $\sum_{k \in L} d_{l}^{k} m_{k}$ and let $d_{l}:=\sum_{k \in L} d_{l}^{k}>0$. Let $l_{0} \in I$ be such that $d:=d_{l_{0}}$ equals $\min _{l \in L} d_{l}$. Let $b^{2} m_{l_{0}}=\sum_{l \in L} c_{l} m_{l}$. Calculating $b^{2} m_{l_{0}}$ in two ways

- as $\left(b^{2}\right) m_{l_{0}}$ and as $b\left(b m_{l_{0}}\right)$, and computing the sum of the coefficients, we have:

$$
N d \geq \sum_{l} c_{l} \geq d^{2}
$$

and consequently $d \leq N$. So there are only finitely many possibilities for $|L|$, values of c_{i} and consequently for expansions $b_{i} m_{l}$ (since each m_{l} appears in $\left.b m_{l_{0}}\right)$. The Proposition is proved.

In particular, for a given finite multitensor category \mathcal{C} there are only finitely many \mathbb{Z}_{+}-modules over $\operatorname{Gr}(\mathcal{C})$ which are of the form $\operatorname{Gr}(\mathcal{M})$ where \mathcal{M} is an indecomposable exact module category over \mathcal{C}.

Exercise 2.8.8. (a) Classify irreducible \mathbb{Z}_{+}-modules over $\mathbb{Z} G$ (Answer: such modules are in bijection with subgroups of G up to conjugacy).
(b) Classify irreducible \mathbb{Z}_{+}- modules over $\operatorname{Gr}\left(\operatorname{Rep}\left(S_{3}\right)\right)$ (consider all the cases: chark $\neq 2,3$, chark $=2$, chark $=3)$.
(c) Classify irreducible \mathbb{Z}_{+}-modules over the Yang-Lee and Ising based rings.

Now we can suggest an approach to the classification of exact module categories over \mathcal{C} : first classify irreducible \mathbb{Z}_{+}- modules over $\operatorname{Gr}(\mathcal{C})$ (this is a combinatorial part), and then try to find all possible categorifications of a given \mathbb{Z}_{+}-module (this is a categorical part). Both these problems are quite nontrivial and interesting. We will see later some nontrivial solutions to this.

2.9. Algebras in categories.

Definition 2.9.1. An algebra in a multitensor category \mathcal{C} is a triple (A, m, u) where A is an object of \mathcal{C}, and m, u are morphisms (called multiplication and unit morphisms) $m: A \otimes A \rightarrow A, u: \mathbf{1} \rightarrow A$ such that the following axioms are satisfied:

1. Associativity: the following diagram commutes:

2. Unit: The morphisms $A \rightarrow \mathbf{1} \otimes A \rightarrow A \otimes A \rightarrow A$ and $A \rightarrow$ $A \otimes \mathbf{1} \rightarrow A \otimes A \rightarrow A$ are both equal to Id_{A}.

Of course, in the case when $\mathcal{C}=\mathrm{Vec}$, we get definition of an associative algebra with unit, and in the case $\mathcal{C}=$ Vec we get the definition of a finite dimensional associative algebra with unit.

Remark 2.9.2. If \mathcal{C} is not closed under direct limits (e.g., \mathcal{C} is a multitensor category), one can generalize the above definition, allowing A to be an ind-object (i.e., "infinite dimensional"). However, we will mostly deal with algebras honestly in \mathcal{C} (i.e., "finite dimensional"), and will make this assumption unless otherwise specified.

Example 2.9.3. 1. 1 is an algebra.
2. The algebra of functions $\operatorname{Fun}(G)$ on a finite group G (with values in the ground field k) is an algebra in $\operatorname{Rep}(G)$ (where G acts on itself by left multiplication).
3. Algebras in Vec_{G} is the same thing as G-graded algebras. In particular, if H is a subgroup of G then the group algebra $\mathbb{C}[H]$ is an algebra in Vec_{G}.
4. More generally, let ω be a 3-cocycle on G with values in k^{\times}, and ψ be a 2-cochain of G such that $\omega=d \psi$. Then one can define the twisted group algebra $\mathbb{C}_{\psi}[H]$ in $\operatorname{Vec}_{G}^{\omega}$, which is $\oplus_{h \in H} h$ as an object of $\operatorname{Vec}_{G}^{\omega}$, and the multiplication $h \otimes h^{\prime} \rightarrow h h^{\prime}$ is the operation of multiplication by $\psi\left(h, h^{\prime}\right)$. If $\omega=1$ (i.e., ψ is a 2 -cocycle), the twisted group algebra is associative in the usual sense, and is a familiar object from group theory. However, if ω is nontrivial, this algebra is not associative in the usual sense, but is only associative in the tensor category $\operatorname{Vec}_{G}^{\omega}$, which, as we know, does not admit fiber functors.

Example 2.9.4. Let \mathcal{C} be a multitensor category and $X \in \mathcal{C}$. Then the object $A=X \otimes X^{*}$ has a natural structure of an algebra with unit in \mathcal{C} given by the coevaluation morphism and multiplication Id $\otimes \mathrm{ev}_{X} \otimes \mathrm{Id}$. In particular for $X=\mathbf{1}$ we get a (trivial) structure of an algebra on $A=1$.

We leave it to the reader to define subalgebras, homomorphisms, ideals etc in the categorical setting.

Now we define modules over algebras:
Definition 2.9.5. A (right) module over an algebra (A, m, u) (or just an A-module) is a pair (M, p), where $M \in \mathcal{C}$ and p is a morphism $M \otimes A \rightarrow M$ such that the following axioms are satisfied:

1. The following diagram commutes:

2. The composition $M \rightarrow M \otimes \mathbf{1} \rightarrow M \otimes A \rightarrow M$ is the identity.

The definition of a left module is entirely analogous.
Definition 2.9.6. The homomorphism between two $A-$ modules $\left(M_{1}, p_{1}\right)$ and $\left(M_{2}, p_{2}\right)$ is a morphism $l \in \operatorname{Hom}_{\mathcal{C}}\left(M_{1}, M_{2}\right)$ such that the following diagram commutes:

Obviously, homomorphisms form a subspace of the the vector space $\operatorname{Hom}\left(M_{1}, M_{2}\right)$. We will denote this subspace by $\operatorname{Hom}_{A}\left(M_{1}, M_{2}\right)$. It is easy to see that a composition of homomorphisms is a homomorphism. Thus A-modules form a category $\operatorname{Mod}_{\mathcal{C}}(A)$.

Exercise 2.9.7. Check that $\operatorname{Mod}_{\mathcal{C}}(A)$ is an abelian category.
The following observations relate the categories $\operatorname{Mod}_{\mathcal{C}}(A)$ and module categories:

Exercise 2.9.8. For any A-module (M, p) and any $X \in \mathcal{C}$ the pair $(X \otimes M, i d \otimes p)$ is again an A-module.

Thus we have a functor $\tilde{\otimes}: \mathcal{C} \times \operatorname{Mod}_{\mathcal{C}}(A) \rightarrow \operatorname{Mod}_{\mathcal{C}}(A)$.
Exercise 2.9.9. For any A-module (M, p) and any $X, Y \in \mathcal{C}$ the associativity morphism $a_{X, Y, M}:(X \otimes Y) \otimes M \rightarrow X \otimes(Y \otimes M)$ is an isomorphism of A-modules. Similarly the unit morphism $1 \otimes M \rightarrow M$ is an isomorphism of A-modules.

This exercise defines associativity and unit constraints \tilde{a}, \tilde{l} for the category $\operatorname{Mod}_{\mathcal{C}}(A)$.
Proposition 2.9.10. The category $\operatorname{Mod}_{\mathcal{C}}(A)$ together with functor $\tilde{\otimes}$ and associativity and unit constraints \tilde{a}, \tilde{l} is a left module category over \mathcal{C}.

Exercise 2.9.11. Prove this Proposition.
The following statement is very useful:
Lemma 2.9.12. For any $X \in \mathcal{C}$ we have a canonical isomorphism $\operatorname{Hom}_{A}(X \otimes A, M)=\operatorname{Hom}(X, M)$.

Exercise 2.9.13. Prove this Lemma.
Exercise 2.9.14. Is it true that any object of $\operatorname{Mod}_{\mathcal{C}}(A)$ is of the form $X \otimes A$ for some $X \in \mathcal{C}$?

Exercise 2.9.15. Show that for any $M \in \operatorname{Mod}_{\mathcal{C}}(A)$ there exists $X \in \mathcal{C}$ and a surjection $X \otimes A \rightarrow M$ (namely, $X=M$ regarded as an object of \mathcal{C}).

Exercise 2.9.16. Assume that the category \mathcal{C} has enough projective objects. Then the category $\operatorname{Mod}_{\mathcal{C}}(A)$ has enough projective objects.

Exercise 2.9.17. Assume that the category \mathcal{C} is finite. Then the category $\operatorname{Mod}_{\mathcal{C}}(A)$ is finite.

Thus we get a general construction of module categories from algebras in the category \mathcal{C}. Not any module category over \mathcal{C} is of the form $\operatorname{Mod}_{\mathcal{C}}(A)$: for $\mathcal{C}=V e c$ the module category of all (possibly infinite dimensional) vector spaces (see Example 2.5.11) is not of this form. But note that for $\mathcal{C}=\mathrm{Vec}$ any finite module category is of the form $\operatorname{Mod}_{\mathcal{C}}(A)$ (just because every finite abelian category is equivalent to $\operatorname{Mod}(A)$ for some finite dimensional algebra A). We will show later that all finite module categories over a finite \mathcal{C} are of the form $\operatorname{Mod}_{\mathcal{C}}(A)$ for a suitable A. But of course different algebras A can give rise to the same module categories.

Definition 2.9.18. We say that two algebras A and B in \mathcal{C} are Morita equivalent if the module categories $\operatorname{Mod}_{\mathcal{C}}(A)$ and $\operatorname{Mod}_{\mathcal{C}}(B)$ are module equivalent.

Note that in the case $\mathcal{C}=$ Vec this definition specializes to the usual notion of Morita equivalence of finite dimensional algebras.

Example 2.9.19. We will see later that all the algebras from Example 2.9.4 are Morita equivalent; moreover any algebra which is Morita equivalent to $A=\mathbf{1}$ is of the form $X \otimes X^{*}$ for a suitable $X \in \mathcal{C}$.

Not any module category of the form $\operatorname{Mod}_{\mathcal{C}}(A)$ is exact:
Exercise 2.9.20. Give an example of module category of the form $\operatorname{Mod}_{\mathcal{C}}(A)$ which is not exact.

Thus we are going to use the following
Definition 2.9.21. An algebra A in the category \mathcal{C} is called exact if the module category $\operatorname{Mod}_{\mathcal{C}}(A)$ is exact.

It is obvious from the definition that the exactness is invariant under Morita equivalence.

We will need the notion of a tensor product over an algebra $A \in \mathcal{C}$.
Definition 2.9.22. Let A be an algebra in \mathcal{C} and let $\left(M, p_{M}\right)$ be a right A-module, and $\left(N, p_{N}\right)$ be a left A-module. A tensor product over $A, M \otimes_{A} N \in \mathcal{C}$, is the quotient of $M \otimes N$ by the image of morphism $p_{M} \otimes i d-i d \otimes p_{N}: M \otimes A \otimes N \rightarrow M \otimes N$.

Exercise 2.9.23. Show that the functor \otimes_{A} is right exact in each variable (that is, for fixed M, N, the functors $M \otimes_{A} \bullet$ and $\bullet \otimes_{A} N$ are right exact).

Definition 2.9.24. Let A, B be two algebras in \mathcal{C}. An $A-B$-bimodule is a triple (M, p, q) where $M \in \mathcal{C}, p \in \operatorname{Hom}(A \otimes M, M), q \in \operatorname{Hom}(M \otimes$ $B, M)$ such that

1. The pair (M, p) is a left A-module.
2. The pair (M, q) is a right B-module.
3. The morphisms $q \circ(p \otimes i d)$ and $p \circ(i d \otimes q)$ from $\operatorname{Hom}(A \otimes M \otimes B, M)$ coincide.

Remark 2.9.25. Note that in the categorical setting, we cannot define (A, B)-bimodules as modules over $A \otimes B^{o p}$, since the algebra $A \otimes B^{o p}$ is, in general, not defined.

We will usually say " A-bimodule" instead of " $A-A$-bimodule".
Exercise 2.9.26. Let M be a right A-module, N be an $A-B$-bimodule and P be a left B-module. Construct the associativity morphism $\left(M \otimes_{A} N\right) \otimes_{A} P \rightarrow M \otimes_{A}\left(N \otimes_{A} P\right)$. State and prove the pentagon relation for this morphism.
2.10. Internal Hom. In this section we assume that the category \mathcal{C} is finite. This is not strictly necessary but simplifies the exposition.

An important technical tool in the study of module categories is the notion of internal Hom. Let \mathcal{M} be a module category over \mathcal{C} and $M_{1}, M_{2} \in \mathcal{M}$. Consider the functor $\operatorname{Hom}\left(\bullet \otimes M_{1}, M_{2}\right)$ from the category \mathcal{C} to the category of vector spaces. This functor is left exact and thus is representable

Remark 2.10.1. If we do not assume that the category \mathcal{C} is finite, the functor above is still representable, but by an ind-object of \mathcal{C}. Working
with ind-objects, one can extend the theory below to this more general case. We leave this for an interested reader.

Definition 2.10.2. The internal Hom $\underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)$ is an object of \mathcal{C} representing the functor $\operatorname{Hom}\left(\bullet \otimes M_{1}, M_{2}\right)$.

Note that by Yoneda's Lemma $\left(M_{1}, M_{2}\right) \mapsto \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)$ is a bifunctor.
 variables.

Lemma 2.10.4. There are canonical isomorphims
(1) $\operatorname{Hom}\left(X \otimes M_{1}, M_{2}\right) \cong \operatorname{Hom}\left(X, \operatorname{Hom}\left(M_{1}, M_{2}\right)\right)$,
(2) $\operatorname{Hom}\left(M_{1}, X \otimes M_{2}\right) \cong \operatorname{Hom}\left(1, X \otimes \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right)$,
(3) $\operatorname{Hom}\left(X \otimes M_{1}, M_{2}\right) \cong \underline{H o m}\left(M_{1}, M_{2}\right) \otimes X^{*}$,
(4) $\underline{\operatorname{Hom}}\left(M_{1}, X \otimes M_{2}\right) \cong X \otimes \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)$.

Proof. Formula (1) is just the definition of $\underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)$, and isomorphism (2) is the composition

$$
\begin{gathered}
\operatorname{Hom}\left(M_{1}, X \otimes M_{2}\right) \cong \operatorname{Hom}\left(X^{*} \otimes M_{1}, M_{2}\right)= \\
=\operatorname{Hom}\left(X^{*}, \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right) \cong \operatorname{Hom}\left(1, X \otimes \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right) .
\end{gathered}
$$

We get isomorphism (3) from the calculation

$$
\begin{aligned}
& \operatorname{Hom}\left(Y, \underline{\operatorname{Hom}}\left(X \otimes M_{1}, M_{2}\right)\right)=\operatorname{Hom}\left(Y \otimes\left(X \otimes M_{1}\right), M_{2}\right)=\operatorname{Hom}\left((Y \otimes X) \otimes M_{1}, M_{2}\right)= \\
& \quad=\operatorname{Hom}\left(Y \otimes X, \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right)=\operatorname{Hom}\left(Y, \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right) \otimes X^{*}\right)
\end{aligned}
$$

and isomorphism (4) from the calculation

$$
\begin{aligned}
& \operatorname{Hom}\left(Y, \underline{\operatorname{Hom}}\left(M_{1}, X \otimes M_{2}\right)\right)=\operatorname{Hom}\left(Y \otimes M_{1}, X \otimes M_{2}\right)= \\
&=\operatorname{Hom}\left(X^{*} \otimes\left(Y \otimes M_{1}\right), M_{2}\right)=\operatorname{Hom}\left(\left(X^{*} \otimes Y\right) \otimes M_{1}, M_{2}\right)= \\
&= \operatorname{Hom}\left(X^{*} \otimes Y, \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right)=\operatorname{Hom}\left(Y, X \otimes \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right) .
\end{aligned}
$$

Corollary 2.10.5. (1) For a fixed M_{1}, the assignment $M_{2} \mapsto \underline{H o m}\left(M_{1}, M_{2}\right)$ is a module functor $\mathcal{M} \rightarrow \mathcal{C}$;
(2) For a fixed M_{2}, the assignment $M_{1} \mapsto \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)$ is a module functor $\mathcal{M} \rightarrow \mathcal{C}^{\mathrm{op}}$.

Proof. This follows from the isomorphisms (4) and (3) of Lemma 2.10.4.

Corollary 2.10.5 and Proposition 2.7.8 imply
Corollary 2.10.6. Assume that \mathcal{M} is an exact module category. Then the functor $\underline{\operatorname{Hom}(\bullet, \bullet)}$ is exact in each variable.

The mere definition of the internal Hom allows us to prove the converse to Proposition 2.7.8:

Proposition 2.10.7. (1) Suppose that for a module category \mathcal{M} over \mathcal{C}, the bifunctor $\underline{H o m}$ is exact in the second variable, i.e., for any object

(2) Let $\mathcal{M}_{1}, \mathcal{M}_{2}$ be two nonzero module categories over \mathcal{C}. Assume that any module functor from \mathcal{M}_{1} to \mathcal{M}_{2} is exact. Then the module category \mathcal{M}_{1} is exact.

Proof. (1) Let $P \in \mathcal{C}$ be any projective object. Then for any $N \in \mathcal{M}$ one has $\operatorname{Hom}(P \otimes N, \bullet)=\operatorname{Hom}(P, \underline{\operatorname{Hom}}(N, \bullet))$, and thus the functor $\operatorname{Hom}(P \otimes N, \bullet)$ is exact. By the definition of an exact module category, we are done.
(2) First we claim that under our assumptions any module functor $F \in \operatorname{Fun}_{\mathcal{C}}\left(\mathcal{M}_{1}, \mathcal{C}\right)$ is exact. Indeed, let $0 \neq M \in \mathcal{M}_{2}$. The functor $F(\bullet) \otimes M \in \operatorname{Fun}_{\mathcal{C}}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right)$ is exact. Since $\bullet \otimes M$ is exact, and $X \otimes M=$ 0 implies $X=0$, we see that F is exact.

In particular, we see that for any object $N \in \mathcal{M}_{1}$, the functor $\underline{\operatorname{Hom}}(N, \bullet): \mathcal{M}_{1} \rightarrow \mathcal{C}$ is exact, since it is a module functor. Now (2) follows from (1).

Example 2.10.8. It is instructive to calculate Hom for the category $\operatorname{Mod}_{\mathcal{C}}(A)$. Let $M, N \in \operatorname{Mod}_{\mathcal{C}}(A)$. We leave it to the reader as an exercise to check that $\operatorname{Hom}(M, N)=\left(M \otimes_{A}{ }^{*} N\right)^{*}$ (note that ${ }^{*} N$ has a natural structure of a left A-module). One deduces from this description of Hom that exactness of A is equivalent to biexactness of the functor \otimes_{A}.

For two objects M_{1}, M_{2} of a module category \mathcal{M} we have the canonical morphism

$$
e v_{M_{1}, M_{2}}: \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right) \otimes M_{1} \rightarrow M_{2}
$$

obtained as the image of Id under the isomorphism

$$
\operatorname{Hom}\left(\underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right), \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right) \cong \operatorname{Hom}\left(\underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right) \otimes M_{1}, M_{2}\right) .
$$

Let M_{1}, M_{2}, M_{3} be three objects of \mathcal{M}. Then there is a canonical composition morphism

$$
\begin{gathered}
\left.\underline{\operatorname{Hom}}\left(M_{2}, M_{3}\right) \otimes \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right)\right) \otimes M_{1} \cong \underline{\operatorname{Hom}}\left(M_{2}, M_{3}\right) \otimes\left(\underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right) \otimes M_{1}\right) \\
\text { Id } \otimes e v_{M_{1}, M_{2}} \underline{\operatorname{Hom}}\left(M_{2}, M_{3}\right) \otimes M_{2} \xrightarrow{e v_{M_{2}, M_{3}}} M_{3}
\end{gathered}
$$

which produces the multipication morphism

$$
\underline{\operatorname{Hom}}\left(M_{2}, M_{3}\right) \otimes \underline{\operatorname{Hom}}\left(M_{1}, M_{2}\right) \rightarrow \underline{\operatorname{Hom}}\left(M_{1}, M_{3}\right) .
$$

Exercise 2.10.9. Check that this multiplication is associative and compatible with the isomorphisms of Lemma 2.10.4.

MIT OpenCourseWare
http://ocw.mit.edu

18.769 Topics in Lie Theory: Tensor Categories

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

