1. ExERCISES

In the exercises below assume everything is defined over the complex numbers. The following exercises are about the Hilbert scheme of conics in \mathbb{P}^{n}.
Exercise 1.1. Calculate the number of conics in \mathbb{P}^{3} that intersect $8-2 i$ lines and contain i points for $0 \leq i \leq 3$.
Exercise 1.2. Generalize our discussion in class to the Hilbert scheme of conics in \mathbb{P}^{n}. Find a model of the Hilbert scheme as a \mathbb{P}^{5}-bundle over the Grassmannian $\mathbb{G}(2, n)$. Work out the cohomology ring for small n.

Exercise 1.3. Find the class of an irreducible component of the space of conics on an anti-canonically embedded Del Pezzo surface D_{n} in \mathbb{P}^{n}.

Exercise 1.4. Calculate the numbers of conics in \mathbb{P}^{4} that intersect general 11 $2 i-3 j$ planes, i lines and j points.
Exercise 1.5. Calculate the class of conics in \mathbb{P}^{n} that are tangent to a hyperplane. Find how many conics are tangent to a general plane and intersect 7 general lines in \mathbb{P}^{3}.

Exercise 1.6. Find the class of the divisor of reducible conics in \mathbb{P}^{n}

