1. Exercises

In the exercises below assume everything is defined over the complex numbers. The following exercises are about the Hilbert scheme of conics in \mathbb{P}^n .

Exercise 1.1. Calculate the number of conics in \mathbb{P}^3 that intersect 8 - 2i lines and contain *i* points for $0 \le i \le 3$.

Exercise 1.2. Generalize our discussion in class to the Hilbert scheme of conics in \mathbb{P}^n . Find a model of the Hilbert scheme as a \mathbb{P}^5 -bundle over the Grassmannian $\mathbb{G}(2, n)$. Work out the cohomology ring for small n.

Exercise 1.3. Find the class of an irreducible component of the space of conics on an anti-canonically embedded Del Pezzo surface D_n in \mathbb{P}^n .

Exercise 1.4. Calculate the numbers of conics in \mathbb{P}^4 that intersect general 11 - 2i - 3j planes, *i* lines and *j* points.

Exercise 1.5. Calculate the class of conics in \mathbb{P}^n that are tangent to a hyperplane. Find how many conics are tangent to a general plane and intersect 7 general lines in \mathbb{P}^3 .

Exercise 1.6. Find the class of the divisor of reducible conics in \mathbb{P}^n