
THE KODAIRA DIMENSION OF THE MODULI SPACE OF 

CURVES 

1. Preliminaries 

A great reference for background about linear systems, big and ample line bun
dles and Kodaira dimensions is [L]. Here we will only develop a few basics that 
will be necessary for our discussion of the Kodaira dimension of the moduli space 
of curves. 

Let L be a line bundle on a normal, irreducible, projective variety X . The 
semi-group N(X, L) of L is defined to be the non-negative powers of L that have a 
non-zero section: 

N(X, L) := { m ∼ 0 : H0(X, L�m) > 0 }. 

Given m ⊕ N(X, L) we can consider the rational map πm associated to L�m . 

Definition 1.1. Let L be a line bundle on a normal, irreducible, projective variety. 
Then the Iitaka dimension of L is defined to be the maximum dimension of the image 
of πm for m ⊕ N(X, L) provided N(X, L) ∈= 0. If N(X, L) = 0, then the Iitaka 
dimension of L is defined to be −→. When X is smooth, the Kodaira dimension 
of X is defined to be the Iitaka dimension of its canonical bundle KX . If X is 
singular, the Kodaira dimension of X is defined to be the Kodaira dimension of 
any desingularization of X . 

Remark 1.2. Note that by definition the Iitaka dimension of a line bundle L on 
X is an integer between 0 and dim(X) or it is −→. 

Definition 1.3. A line bundle L on a normal, projective variety is called big if its 
Iitaka dimension is equal to the dimension of X . A smooth, projective variety is 
called of general type if its canonical bundle is big. A singular variety is called of 
general type if a desingularization is of general type. 

Remark 1.4. Of course, the same definitions can be made for Cartier (or even Q-
Cartier) divisors instead of line bundles. Below we will use the language of Cartier 
divisors and line bundles interchangably. 

An alternative definition of big line bundles in terms of cohomology is given by 
the following well-known lemma. 

Lemma 1.5. A line bundle L on a normal, projective variety X of dimension n is 
big if and only if there exists a positive constant C such that 

h0(X, L�m) ∼ Cm n 

for all sufficiently large m ⊕ N(X, L). 

Kodaira’s Lemma allows us to obtain other useful characterizations of big line 
bundles. 
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Lemma 1.6 (Kodaira’s Lemma). Let D be a big Cartier divisor and E be an 
arbitrary effective Cartier divisor on a normal, projective variety X. Then 

H0(X, OX (mD − E)) ∈= 0 

for all sufficiently large m ⊕ N (X, D). 

Proof. Consider the exact sequence 

0 � OX (mD − E) � OX (mD) � OE (mD) � 0. 

Since D is big by assumption, the dimension of global sections of OX (mD) grows 
like mdim(X). On the other hand, dim(E) < dim(X), hence the dimension of global 
sections of OE (mD) grows at most like mdim(X)−1 . It follows that 

h0(X, OX (mD)) > h0(E, OE (mD) 

for large enough m ⊕ N (X, D). The lemma follows by the long exact sequence of 
cohomology associated to the exact sequence of sheaves. � 

A corollary of Kodaira’s Lemma is the characterization of big divisors as those 
divisors that are numerically equivalent to the sum of an ample and an effective 
divisor. We will use this characterization in determining the Kodaira dimension of 
the moduli space of curves. 

Proposition 1.7. Let D be a divisor on a normal, irreducible projective variety 
X.	 Then the following are equivalent: 

(1)	 D is big. 

(2)	 For any ample divisor A, there exists an integer m > 0 and an effective 
divisor E such that mD is linearly equivalent to A + E. 

(3)	 There exists an ample divisor A, an integer m > 0 and an effective divisor 
E such that mD is linearly equivalent to A + E. 

(4)	 There exists an ample divisor A, an integer m > 0 and an effective divisor 
E such that mD is numerically equivalent to A + E. 

Proof. To prove that (1) implies (2) given any ample divisor A, take a large enough 
positive number r such that both rA and (r + 1)A are effective. By Kodaira’s 
Lemma there is a positive integer m such that mD − (r + 1)A is effective, say 
linearly equivalent to an effective divisor E. We thus get that mD is linearly 
equivalent to A + (rA + E) proving (2). Clearly (2) implies (3) and (3) implies (4). 
To see that (4) implies (1), since mD is numerically equivalent to A + E, mD −E is 
numerically equivalent to an ample divisor. Since ampleness is numerical, mD −E 
is ample. Since ample divisors are big and 

h0(X, mD) ∼ h0(X, mD − E), 

D is big.	 � 

2. The canonical bundle of the moduli space of curves 

We can calculate the canonical class of the moduli space of curves using the 
Grothendieck - Riemann - Roch formula. 

Theorem 2.1. The canonical class of the coarse moduli scheme M g is given by 

K = 13� − 2ν − ν1.M g 
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Proof. The cotangent bundle of Mg at a smooth, automorphism-free curve is given 
by the space of quadratic differentials. More generally, over the automorphism-free 
locus the canonical bundle will be the first chern class of 

≤ � ).α�(ΓMg,1 /Mg Mg,1 /Mg 

We can easily calculate this class in the Picard group of the moduli functor: 
� ⎞

2 2c1(Γ ≤ �) c1(Γ) c1(Γ) + c2(Γ)
α� (1 + c1(Γ ≤ �) + − c2(Γ ≤ �))(1 − + )

2 2 12 

Expanding (and using the relations we proved in the last unit) we see that this 
expression equals 

� ⎞

2c1(�) + [Sing]2 2α� 2c1(�) − [Sing] − c1(�) + = 13� − 2ν. 
12 

We need to adjust this formula to take into account that every element of the locus 
of curves with an elliptic tail have an automorphism given by the hyperelliptic 
involution on the elliptic tail. The effect of this can be calculated in local coordinates 
to see that it introduces a simple zero along that locus. � 

Remark 2.2. One word of caution is in order. Recall that ν1 does not descend 
to the coarse moduli scheme because every curve in the boundary locus has an 
automorphism of order 2. However, ν2 descends to the coarse moduli scheme. 1 
Accordingly we defined the class ν1 as half of the class of the boundary locus Θ1. 
In terms of the class of the loci of reducible curves the canonical class is 

1 
13� − 2[Θ] + [Θ1]. 
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3. Ample divisors on the moduli space of curves 

In order to show that the moduli space is of general type we need to show that 
the canonical bundle is big (on a desingularization). In view of the discussion in the 
first section we can try to express the canonical bundle as a sum of an ample and 
an effective divisor. The G.I.T. construction gives us a large collection of ample 
divisors. 

For our purposes we need only the following fact: 

Lemma 3.1. The divisor class � is big and NEF. 

Proof. The shortest proof of this result is based on some facts about the Torelli 
map and the moduli spaces of abelian varieties. We can map the moduli space 
of curves Mg to the moduli space Ag of principally polarized abelian varieties of 
dimension g by sending C to the pair (J ac(C), �) consisting of the Jacobian of 
C and the theta divisor. In characteristic zero this map extends from Mg to the 
Satake compactification. The class � is a multiple of the pull-back of OPn (1) from 
the embedding of Ag by theta constants. The lemma follows. � 

A much more precise theorem due Cornalba and Harris [CH] determines the 
restriction of the ample cone of Mg to the plane spanned by � and ν. 

Theorem 3.2. Let a and b be any positive integers. Then the divisor class a� − bν 
is ample on Mg if and only if a > 11b. 
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For a nice exposition of the proof see [HM1] §6.D. 

�Remark 3.3. Note that itself is not ample, but since it is big it is a sum of an 
ample and an effective divisor. Consequently, it suffices to express the canonical 
bundle of Mg as a sum of � and an effective divisor. 

4. The moduli space is of general type 

In this section we would like to sketch the main steps of the proof of the following 
fundamental theorem due to Harris, Mumford and Eisenbud. You can read more 
about the details in [HM1] §6.F. The papers [HM2], [H] and [EH5] contain the 
proofs. 

Theorem 4.1. The moduli space of curves M g is of general type if g ∼ 24. 

The strategy of the proof is to show that the canonical class of the moduli space 
of curves is numerically equivalent to the sum of an ample and an effective divisor. 
We already know that the class of any divisor on the moduli space may be expressed 
as a linear combination of the classes � and the boundary divisors νi. 

We know that the canonical class of Mg is given by the formula 

KMg 
= 13� − 2ν − ν1. 

We also know that since (11 + φ)� − ν is ample, � is big. Hence if we could find an 
effective divisor 

a� − b0νirr − b1ν1 − · · · − b∗g/2⊗ ν∗g/2⊗ 

satisfying the inequalities 
a 13 a 13 
bi 

< 
2 

, 
b1 

< 
3 

then this will show that the canonical bundle is big because it may be expressed as 
the sum of a big and effective class. 

There are two main difficulties with the approach we have outlined so far. First 
the construction of effective divisors with small slope is a difficult problem. We 
will see that the Brill-Noether and Petri divisors will do the job for Theorem 4.1. 
However, the calculation of these divisor classes are not easy. 

The second problem is that even if we show that there are many canonical forms 
on M g, this does not necessarily prove that the moduli space is of general type. 
The problem is that M g is singular. It is possible that canonical forms defined on 
the smooth locus do not extend to a desingularization. In fact, this is not the case. 
All the singularities of M g are canonical, hence the canonical forms defined on the 
smooth locus extend to any desingularization. More precisely: 

Theorem 4.2. Let g ∼ 4. Then for every n, the n-canonical forms defined on the 
nlocus of curves without automorphisms extend to -canonical forms on a desingu

larization of M g. 
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A sketch of some ideas. We will briefly outline some of the main ideas that go into 
the proof. For a complete argument see [HM2]. 

The proof relies on Reid-Tai Criterion. Let G be a finite group acting on a finite 
dimensional vector space V linearly. Let V 0 be the locus where the action is free. 
The Reid-Tai criterion answers the question of when pluri-canonical forms extend 
from V 0/G to a desingularization of V/G. For all g ⊕ G, let g be conjugate to a 
matrix Diag(λa1 , . . . , λad ) where λ is a primitive mth root of unity and 0 � ai < m. 
If for all g ⊕ G and λ 

d 
⎛ ai 

∼ 1 
m 

i=1 

then any pluri-canonical form on V 0/G extends holomorphically to a desingular
ization of V/G. 

In view of the Reid-Tai Criterion one has to check whether 
⎠d ai ∼ 1 holds and i=1 m 

in cases it does not hold verify by hand that the pluri-canonical sections extend 
holomorphically to a desingularization. The following theorem characterizes the 
stable curves that fail to satisfy the Reid-Tai criterion. 

Theorem 4.3. Let C be a stable curve of arithmetic genus g ∼ 4. Let π be an 
automorphism of C of order n. Let λ be a primitive n-th root of unity and suppose 
that the action of π on H0(ΓC ≤ �C ) is given by Diag(λa1 , . . . , λa3g−3 ). Then one 
of the following possibilities hold: 

ai(1)	
⎠3g−3 

m ∼ 1.i=1 

(2)	 C is the union of an elliptic or one-nodal rational curve C1 meeting a curve 
C2 of genus g − 1 at one point. π is the hyperelliptic involution on C1 and 
the identity on C2. 

(3)	 C is the union of the elliptic curve C1 with j invariant 0 meeting a curve 
C2 of genus g− 1 at one point. π is an order 6 automorphism of C1 and is 
the identity on C2. 

(4)	 C is the union of the elliptic curve C1 with j invariant 123 meeting a curve 
C2 of genus g− 1 at one point. π is an order 4 automorphism of C1 and is 
the identity on C2. 

The proof of this result rests on a case by case analysis of the possibilities based 
on a lemma that solves the problem for smooth curves. 

Lemma 4.4. Let C be a smooth curve. Let π be an automorphism of C of order n. 
Let λ be a primitive n-th root of unity and suppose that the action of π on H0(ΓC ≤ 
�C ) is given by Diag(λa1 , . . . , λa3g−3 ). Then one of the following possibilities hold: 

ai(1)	
⎠3g−3 

m ∼ 1.i=1 

(2)	 C is a genus zero or one curve. 
(3)	 C is a hyperelliptic curve of genus 2 or 3 and π is the hyperelliptic involu

tion. 
(4)	 C is a genus 2 curve which is the double cover of an elliptic curve and π is 

the involution exchanging the branches. 
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The proof of the lemma is based on an analysis of the possibilities using the 
Riemann-Hurwitz formula. 

The final step of the proof is to check by explicit computation that pluri-canonical 
forms extend to the resolution of the singularities over the loci that do not satisfy 
the Reid-Tai Criterion. 

The fact that Mg has canonical singularities allows us to carry out the naive 
program outlined above. We need effective divisors of small slope. The locus of 
curves that admit a degree d map to Pr where g, r, d satisfy the equality 

g − (r + 1)(g − d + r) = −1 

form a divisor on Mg called the Brill-Noether divisor. Its class is given by the 
following theorem: 

Theorem 4.5. If g + 1 = (r + 1)(g − d + r), then the class of the Brill-Noether 
divisor on Mg is given by 

⎝ � 
g + 1 

∗g/2⊗ 
⎛ 

�(g + 3)� − νirr − i(g − i)νic � 
6 

i=1 

where c is a positive rational constant. 

Unfortunately this divisor exists only when g + 1 is composite. When g is com
posite and g + 1 is not, every curve admits finitely many degree d maps to Pr 

where 

g − (r + 1)(g − d + r) = 0. 

The number of such maps may be determined by Schubert calculus. We can then 
try to define a divisor by asking that some of these maps not be distinct. This will 
essentially be the Petri divisor (we will give a more precise definition below). 

Example 4.6. The Petri divisors in g = 4 and 6 are fun to describe. Consider a 
smooth, non-hyperelliptic curve C of genus 4. The canonical model of such a curve 
is the complete intersection in P3 of a quadric and a cubic surface. Such a curve 
lies on a unique quadric surface. If the quadric is a smooth quadric surface, then C 

1possesses two (distinct) g3 s. They are given by projection to either of the factors 
of P1 × P1 . In codimension one C lies on a quadric cone. For such curves the two 
g3 s come together. The Petri divisor is simply the closure of such curves. 

Exercise 4.7. Calculate the class of the divisor given by the closure of curves 
whose canonical model lies in a singular quadric. 

Let C be a smooth, non-hyperelliptic curve of genus 6. A general such curve C 
2lies on a Del Pezzo surface of degree 5 and contains 5 distinct g6 s corresponding to 

the ways of blowing down D5 to P2 . If C lies on a Del Pezzo surface with double 
2points, then these g6 s are no longer distinct. Again the Petri divisor is the closure 

of the locus of such curves. 
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The Petri divisor is defined as the closure of the union of codimension one loci in 
Mg of curves which possess a linear series V ⊗ H0(C, L) of degree d and dimension 
1 such that the multiplication map 

V ≤ H0(C, K ≤ L−1) � H0(C, K) 

is not injective. 

Theorem 4.8. Let g = 2(d − 1). Then the class of the Petri divisor is given by 

2(2d − 4)! � � 
(6d2 + d − 6)� − d(d − 1)νirr − (2d − 3)(3d − 2)ν1 − · · · 

d!(d − 2)! 

where the coefficients of the remaining boundary divisors are negative and larger in 
absolute value than that of ν1 (at least when d > 4). 

The Brill-Noether and Petri divisors give us the necessary divisors to conclude 
the proof of Theorem 4.1. When g ∼ 24 and odd, we can use the Brill-Noether 
divisor with r = 1. The relevant ratio is that of � and ν0 and is equal to 

12 
6 + . 

g + 1 

When g ∼ 24 this is less than 6.5, hence the canonical class of Mg is big provided 
g + 1 is not prime. The Brill-Noether divisors also take care of the cases g = 24, 26. 
When g is even and greater than or equal to 28, the Petri divisor works to give the 
conclusion. 

We will spend the next section calculating the class of the Brill-Noether divisor. 
The class of the Petri divisor is harder to compute. You can find the computation 
in [EH5]. 

Remark 4.9. Recently G. Farkas has announced that M22 and M23 are also of 
general type. The strategy of his proof is the same. He constructs more elaborate 
effective divisors. 

5. The compuatation of the classes of Brill-Noether Divisors 

5.1. The Brill-Noether Theorem. In this subsection we will discuss some of 
the basics of Brill-Noether theory and the theory of limit linear series. Eisenbud 
and Harris have developed this theory in order to prove theorems like the Brill-
Noether or Gieseker-Petri theorems. We will describe their approach to some of 
these problems. The best places to start learning about the subject are Chapter 
5 of [HM1] and [ACGH]. Other good references [GH], [EH2], [EH1], [EH3], [EH4], 
[KL2], [KL1] among others. 

Brill-Noether theory asks the following fundamental question: 

Question 5.1. When can a curve of genus g be represented in Pr as a non-
degenerate curve of degree d? 

There is an expected answer to this question. We are asking when does there 
exist a degree d line bundle on a curve C of genus g with at least an r+1-dimensional 
space of global sections? We can calculate the expected dimension of this locus in 
P icd(C) as follows. Let us twist all the line bundles in P icd(C) by OC (np) for a 
sufficiently large n (large enough to kill h1). Over P icd(C) there is a map between 

7 



the push-forward of the Poincare bundle and the trivial bundle of rank n given by 
evaluation at the point p. We are interested in the dimension of the locus where the 
evaluation map has kernel of dimension at least r + 1. The expected codimension 
of the locus is given by (r + 1)(g − d + r). 

The Brill-Noether number is defined as follows 

ζ(g, r, d) = g − (r + 1)(g − d + r). 

By the discussion in the previous paragraph on a general curve of genus g, we expect 
rthere to be a gd if and only if this number is non-negative. 

Example 5.2. One learns very early in one’s algebraic geometry career that every 
Riemann surface admits a non-constant meromorphic function. One then ask given 
a genus g Riemann surface S what is the smallest degree meromorphic function on 
S? 

(1) If S has genus zero, then there are non-constant meromorphic functions of 
degree one, namely the Möbius transformations. 

(2) If	 S has genus one or two, then the smallest degree non-constant mero
morphic function has degree 2. For instance, in the case of genus 1, the 
Weiestrass p function is such a function. 

(3) If S has genus 3, already the story becomes more complicated. If S is hyper-
elliptic, then it does admit a meromorphic funciton of degree 2. However, 
not all genus 3 curves are hyperelliptic. They do not admit meromorphic 
functions of degree 2. However, non-hyperelliptic curves of genus 3 can be 
realized as plane quartics in P2 . Projecting the quartic from a point on the 
curve gives a meromorphic function of degree 3. 

(4) If S is a non-hyperelliptic curve of genus 4, then its canonical image is the 
complete intersection of a quadric and a cubic in P3 . By projecting to one 
of the factors of P1 × P1 or the base of the Hirzebruch surface F2 (in case 
the quadric is singular), we obtain a map of degree 3 to P1 . 

(5) If S is a non-hyperelliptic and non-trigonal curve of genus 5, then it is the 
complete intersection of three quadric hypersurfaces in P4 . Hence such a 
curve does not admit a map of degree 3 to P1 (Exercise: why?). Show that 
a such a curve does admit a map of degree 4 to P1 . (Hint: The intersection 
of two quadrics is a Del Pezzo surface of degree 4. The map to P2 blowing 
down 5 disjoint exceptional curves presents the curve as a five-nodal sextic. 
Project from a node.) 

(6) Show that a general curve of genus 6 does not admit a curve of degree 2 or 
3 to P1, but does admit a map of degree 4. (Hint: The canonical image of 
a general curve of genus 6 lies on a degree 5 Del Pezzo surface in P5.) 

(7) One can carry the analysis a little further. In fact the following is known. 

Proposition 5.3. Every Riemann surface of genus g admits a non-constant 
meromorphic function of degree ∪ g+3 ⊂. Moreover, a general Riemann sur2 
face of genus g does not admit a non-constant meromorphic function of 
smaller degree. 
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We say that a curve C of genus g has a gr if there exists a line bundle L of degree d 
d on C with h0(C, L) ∼ r. The Brill-Noether theorem asserts that a general curve 
has a gr if and only if the Brill-Noether number ζ(g, r, d) is non-negative. In fact, d 
more is true. Let W (C)r be the locus of line bundles in Picd(C) that have at least d 
r + 1-dimensional space of global sections. Then for a general C, the dimension of 
this locus is given by the Brill-Noether number. 

Theorem 5.4 (Brill-Noether, Kempf, Kleiman-Laksov, Griffiths-Harris, Eisen-
bud-Harris). Let C be a general curve of genus g. Then the dimension of W (C)r isd 
equal to the Brill-Noether number. In particular, there exists a gr on C if and only d 
if the Brill-Noether number is non-negative. Moreover, in case ζ(g, r, d) = −1, the 

rclosure of the locus of smooth curves that possess a g is a divisor in Mg .d 

Remark 5.5. Note that the previous proposition is a special case of the Brill-
Noether theorem. If we take r = 1, then we see that the Brill-Noether number is 
non-negative if and only if d ∼ ∪ g+3 ⊂.2 

A sketch of the proof. The idea of the proof goes back to Castelnuovo. Let us 
consider a g-nodal rational curve and try to calculate the dimension of the space of 

rgds on such a curve. If the dimension is correct, then we have a chance of deducing 
the theorem for general curves by specializing them to a g-nodal rational curve. A 
map of degree d to Pr (where r < d) on a g-nodal rational curve amounts to the 
same thing as the projection of a rational normal curve of degree d from a Pd−r−1 

that meets g specified secant lines. In other words we are asking for the dimension 
of the intersection of g Schubert cycles �r in G(d − r − 1, d). Had these cycles 

rbeen general we could conclude that the dimension of the space of gd on a g-nodal 
rational curve is 

(d − r)(r + 1) − gr. 

I leave it to you to verify that this is equal to the Brill-Noether number. 

There are a few problems with the previous idea. First, the Jacobian of a g-nodal 
r rcurve is not compact, so the limits of gds on a general curve need not be gds. Second, 

more serious problem, is that the Schubert cycles �r are not general Schubert cycles, 
hence their intersection need not be dimension theoretically transverse. We will 
completely circumvent the first problem and deal with the second in the meantime 
by specializing to g-cuspidal curves. In other words, we will make the Schubert 
cycles �r be defined with respect to tangent lines to the rational normal curve. 
Note that the semi-stable reduction of such a curve is the normalization of the curve 
with g elliptic tails attached at the points that map to the cusps. In particular, the 
non-compactness issue disappears. 

Theorem 5.6 (Eisenbud-Harris). Let p1, . . . , pm be distinct points on a rational 
normal curve of degree d in Pd . Let F1, . . . , Fm be the osculating flags to the rational 
normal curve defined at these points, respectively. Then Schubert varieties defined 
with respect to the flags Fi in the Grassmannian, if non-empty, intersect in the 
expected dimension. 
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The proof of this theorem is based on a Plücker formula. Let V ⊗ H0(C, L) be 
a linear series of vector-space dimension r + 1 on a genus g curve C. Let 

0 � �0(p) � �1(p) � · · · � �r (p) 

be the ramification sequence of V at a point p of C. Let Ri(p) be the orders of 
vanishing of sections in V at p. Recall that the ramification sequence index �i(p) 
is defined to be �i(p) = Ri(p) − i. The sum of all the ramification indeces over all 
points of the curve C may be expressed only in terms of the dimension of V , degree 
of L and the genus of C as the following proposition indicates. 

Proposition 5.7. Let V be a linear series of degree d and vector-space dimension 
r + 1 on a genus g curve. Then the sum of the ramification indices satisfy the 
following equality 

⎛ r(r + 1) 
�j (p) = (r + 1)d + (2g − 2). 

2 
j,p 

Proof of Proposition. The Taylor expansions of order r of the sections in V gives a 
map to the bundle of r-jets of sections of L 

� : V ≤OC � P r (L). 

Taking the r + 1st exterior power we get a map 
r+1 

OC � P r (L). 

The formula claimed in the proposition arises from calculating the number of zeroes 
of this map in two different ways. First of all using the exact sequence that relates 
principal parts bundles 

0 � L × Km � P m(L) � P m−1(L) � 0C 

we see inductively that 
r+1 

r(r+1) 

= Lr+1 ≤ K 2P r (L) � C . 

Therefore, the number of zeros is equal to 

r(r + 1) 
(r + 1)d + (2g − 2),

2 
which is the right hand side of the claimed formula. 

On the other hand, we can calculate the number of zeros in local coordinates. 
At each point p ⊕ C we choose the sections of V that vanish to order i + �i(p) in 
terms of a local coordinate t. The order of zeros of the map is the smalles order of 
vanishing of any linear combination of the (r + 1) × (r + 1) minors of the matrix 

⎝ 
t�0 (p) t1+�1 (p) t2+�2 (p) · · · 

� 

��0(p)t�0 (p)−1 (1 + �1(p))t�1 (p) · · · · · · � . 
. . . . . . . . . . . . 

This order is precisely the left hand side of the formula in the proposition. � 

In particular, when the genus is equal to zero we see that the total ramification 
is equal to (r + 1)(d− r). Since the total ramification may not exceed this number 
it is now easy to conclude the Eisenbud-Harris Theorem. � 
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Exercise 5.8. Check that for a map of a rational curve to have a ramification 
sequence �0, . . . , �r+1 at p is equivalent to asking the center of the projection to 
satisfy the Schubert condition of codimension equal to the sum of the ramification 
indeces with respect to the osculating flag to C at p. Express the class of the 
Schubert variety in terms of the ramification sequence. 

Another central theorem of curve theory that is amenable to similar (but more 
difficult) techniques is the Gieseker-Petri Theorem. 

Theorem 5.9 (Gieseker-Petri, Eisenbud-Harris, Lazarsfeld). Let C be a general 
curve. Let L be any line bundle on C. Then the multiplication map 

H0(C, L) ≤ H0(C, K ≤ L−1) � H0(C, K) 

is injective. 

Suppose that there exists a gr
d with negative Brill-Noether number. Using 

Riemann-Roch for curves, we see that 

h0(K − g rd) = h0(g rd) − d + g − 1 = r + 1 − d + g − 1 = r − d + g. 

Since the Brill-Noether number is negative, we must have (r+ 1)(r− d+ g) ∼ g+ 1. 
Hence the domain of the map H0(C, L) ≤ H0(C, K ≤ L−1), where L is the line 
bundle giving the gr

d has dimension at least g + 1. Consequently, the Petri map 
cannot be injective. We conclude that for a Gieseker-Petri general curve there does 
not exist a gr

d if the Brill-Noether number is negative. 

Remark 5.10. In general, the failure of the injectivity cannot be explained by 
dimension theoretic reasons alone. Consider a genus 4 curve with a canonical form 
with a single zero (necessarily of multiplicity 6). The Weierstrass sequence for such 
a point is given as follows: 

h0(3p) = 2, h0(5p) = 3, h0(6p) = 4. 

Although the target and the domain vector spaces in h0(3p) ≤ h0(3p) � h0(6p) 
have the same dimension, the multiplication map is not an isomorphism since it is 
not possible to get a section vanishing to order 5 by multiplying sections vanishing 
to order 3. 

Unfortunately, most easy to manipulate curves are not general in the sense of 
Gieseker-Petri. For example, a k-gonal curve, that is a curve admitting a non-
constant holomorphic map of degree k to P1, if k is small (k < (g+3)/2 compared to 
g) will not satisfy the Gieseker-Petri Theorem as observed by the above calculation. 

5.2. Limit linear series. In this subsection we will briefly sketch the theory of 
limit linear series for curves of compact type developped by Eisenbud and Harris 
in order to study Brill-Noether theory. Since Joe has written very good accounts 
of the theory our treatment will be brief. One of the main uses of the theory is 
to describe the closure of Brill-Noether conditions on singular curves. For more 
details see [HM1] Chapter 5, [EH1], [EH3], [EH4], [EH2]. 

Definition 5.11. A curve is of compact type if its dual graph is a tree. 
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Proposition 5.12. The following conditions on an at worst nodal curve C of genus 
are equivalent 

(1) C is of compact type. 
(2) The sum of the geometric genera of the components of C equals g. 
(3) The Jacobian of C is compact. 

Proof. If C is of compact type, then its dual graph is a tree. In particular, every 
irreducible component of C is smooth and any two components meet at most in one 
point. We can prove the equivalence of 1 and 2 by induction. If the dual graph of 
C has only one vertex, then the equivalence is obvious. Suppose the result is true 
for C whose dual graphs have at most k vertices. Take a leaf of the dual graph of C 
with k + 1 vertices. If we remove the leaf, the remaining curve is a curve of compact 
type whose dual graph has k vertices. Hence the sum of the geometric genera of its 
components equals its genus. Since the component we removed is attached at one 
point using the exact sequence 

0 � OC � OC1 ≥OC2 � OC1 �C2 � 0 

we see that 
h1(C, OC ) = h1(C1, OC1 ) + h1(C2, OC2 ). 

This completes the proof that 1 implies 2. 

To see that 2 implies 1, we observe that by the same exact sequence that the 
genus of a curves is at least the sum of the genus of its components. If there is a 
loop, then by the exact sequence the genus of the curve formed by a loop is one 
more than the sum of its components. 

To see the equivalence of these conditions with the condition that the Jacobian 
is compact, we need to study the group line bundles on a singular curve. Let 

˜ω : C � C be the normalization of the curve C. 

We have an exact sequence 

0 � C� � (C�)r � �(C) � Pic(C) � Pic( C̃) � 0, 

where r is the number of irreducible components of C. Consequently, J(C) is 
compact if and only if the number of points lying over the singular points of the 
curve is two less than twice the number of irreducible components. But the latter 
can only happen if and only if the dual graph of the curve is a tree. This proves 
the equivalence of the conditions. � 

The importance of curves of compact type arises from the fact that one can 
develop a theory of limits of line bundles on such curves. In fact, one can develop 
such a theory on tree-like curves. A Deligne-Mumford stable curve is tree-like 
if after normalizing the curve at its non-separating nodes one obtains a curve of 
compact type. In other words, a tree-like curve differs from curves of compact type 
so that the irreducible components may have internal nodes. 

The main difficulty. Suppose you have a one-parameter family of curves X � B 
such that the total space of the family is smooth, all the fibers but the central fiber 
are smooth curves and the central fiber is a reducible nodal curve with smooth 
components. Given line bundle L on X −X0, we can always extend it to the total 
space. Since X−X0 is smooth, the line bundle L corresponds to a Cartier divisor on 
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X −X0. We can take the closure of this divisor in X to obtain a Cartier divisor on 
X (Note that here we use the smoothness of the total space). Since Cartier divisors 
correspond to line bundles, there is a corresponding line bundle L̃ extending L. 

Unfortunately, the extension is not unique. This is the main technical difficulty 
of the subject. Suppose the central fiber X0 = Y ∞ Z. If we twist L̃ by OX (mY ) 
or OX (mZ), we do not change the line bundle L on X −X0; however, we obtain a 
different line bundle on the total space. 

Definition 5.13 (Limit linear series). Let C be a curve of compact type. A limit 
linear series D of degree d and dimension r on C is a linear series |VY | of degree d 
and dimension r on every irreducible component of C called the aspect of D on Y , 
such that for any two components Y and Z of C meeting at a node p the aspects 
VY and VZ satisfy 

ai(VY , p) + ar−i(VZ , p) ∼ d. 

The limit linear series is refined if the following inequalities are equalities for every 
i. The limit linear series is crude if one inequality is strict. 

Using the Plücker formulae one may generalize the Brill-Noether theorem to 
curves of compact type. In fact, to tree-like curves as follows: 

Theorem 5.14. Let C be a tree-like curve. Suppose the following about the irre
ducible components of Y : 

(1)	 If the genus of Y is 1, then Y meets the rest of the curve in one point. 

(2)	 If the genus of Y is 2, then Y meets the rest of the curve in one point which 
is not a Weierstrass point. 

(3)	 If the genus of Y is three or more, then Y meets the rest of the curve at 
general points 

If p1, . . . , pr are general points of C or arbitrary smooth points on rational compo
nents of C, then for any ramification sequence at the points pi, the dimension of 
the special linear series with the given ramification sequences at the points has the 
expected dimension. 

Remark 5.15. For our purposes, the important corollary of the theorem is that 
if we consider the pull-back of the Brill-Noether divisor to M0,n and M2,1 via the 
map that attaches g fixed elliptic curves at the marked points and the map that 
attaches a fixed genus g − 2 curve, respectively, the pull-back to M0,n is zero while 
the pull-back to M2,1 is supported on the Weierstrass divisor. 

5.3. Calculating the classes of the Brill-Noether divisors. In this subsection 
we complete our discussion of the proof of Theorem 4.1 by calculating the class of 
the Brill-Noether divisors. For the rest of this section assume that the Brill-Noether 
divisor is expressed as follows in terms of the standard generators 

∗g/2⊗ 
⎛ 

a� − b0νirr − biνi. 
i=1 
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We calculate the class by pulling-back the Brill-Noether divisor to M2,1 and M0,g . 
Using the first pull-back we obtain the relations 

b1 b2 
a = 5b1 − 2b2 and birr = − . 

2 6 
Using the second pull-back, we obtain for i > 1 the relations 

i(g − i)
bi = b1. 

g − 1 

Solving for all the coefficients in terms of b1, we obtain the class of the Brill-Noether 
divisors upto a positive constant. (One can determine the constant, but we do not 
need this for proving Theorem 4.1.) 

Theorem 5.16. If g + 1 = (r + 1)(g − d + r), then the class of the Brill-Noether 
divisor on Mg is given by 

⎝ � 
g + 1 

∗g/2⊗ 
⎛ 

�(g + 3)� − νirr − i(g − i)νic � 
6 

i=1 

where c is a positive rational constant. 

To conclude the proof we need to obtain the claimed relations between the coef
ficients. First, consider the map 

atg−2 : M2,1 � Mg 

obtained by attaching a fixed genus g − 2 curve with a marked point to curves 
of genus 2 with a marked point along their marked points. The theory of limit 
linear series shows that the pull-back of the Brill-Noether divisor is a multiple of 
the divisor W on M2,1 obtained by taking the closure of the locus in M2,1 where 
the marked point is a Weierstrass point. The first set of relations are obtained by 
comparing the class of W and the pull-backs of the standard generators by atg−2 

Claim 5.17. The class of the Weierstrass divisor W is given by 

W = 3� − � − ν1, 

where � is the class of the relative dualizing sheaf on M2,1. 

The pull-back of � by atg−2 is � on M2,1. Similarly the pull-backs of νirr and ν1 

by atg−2 are νirr and ν1 on M2,1, respectively. By adjunction the pull-back of ν2 is 
−�. It follows that by pulling back the Brill-Noether divisor and using the claim 
we obtain the relation 

a� − birr νirr − b1ν1 − b2� = c(3� − � − ν1). 

We thus see that b2 = 3c. Next we use the relation 

10� = νirr + 2ν1 

to solve for the other coefficients to obtain the first set of relations. 

To calculate the class of the Weierstrass divisor W , we note that a Weierstrass 
point is a ramification point of the canonical linear series. Using this one can exhibit 
W as the degenracy locus of a map between vector bundles. 
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Exercise 5.18. Carry this out and complete the calculation of the class of W . 
(Hint: See page 338-339 in [HM1]). 

Next, consider the map

att : M0,g � Mg


obtained by attaching a fixed one pointed elliptic curve to the marked points. To 
obtain the required relations among the coefficients of the boundary we consider 
the pull-back of the Brill-Noether divisors by α. Since the Brill-Noether divisor is 
disjoint from the imape of att, the pull-back of the divisor to M0,g is zero. 

We thus obtain the following relation among the coefficients: 

∗g/2⊗ 
⎛ 

a att�� − b0 att�ν0 − bi att�νi = 0. 
i=1 

We have to calculate the pull-backs of the standard divisors by att. Clearly, � 
and νirr pull-back to zero. The pull-backs of the divisors νi are the classes ν0 on 
M0,g (where we place a 0 to remind ourselves that these are the divisors on M0,g ) 
provided i > 1. The image of att is contained in Θ1 ⊗ Mg , so the pull-back of ν1 is 
the trickiest. To calculate its class, we take a one-parameter family of curves 

α : C � B 

in M0,g . We may assume that every member of the family has at most two compo
nents and that the total space of the family is smooth. Contracting the components 
with fewer sections (or either of the components when equal numbers of sections 
pass through both components), we obtain a P1 bundle with g sections 

˜ ˜α : C � B. 

Since the classes of any two sections differ by a multiple of the fiber class, the 
difference of two section classes has self-intersection zero. 

The pull-back of ν1 by att is the push-forward to the sum of the squares of the 
sections δi in the original family to the base. The sections ρi in the projective 
bundle and in the original family are related by 

∗g/2⊗ 
⎛ ⎛ ⎛ 

α̃�( ρi 
2) = α�( δi 

2) + i νi 
0 . 

i=2 

Using that 
ρ2 + ρj 

2 = 2ρi · ρji 

we obtain the relation 
∗g/2⊗ 

⎛ ⎛ 
α̃�( ρi 

2) = 
i(i − 1) 

νi 
0 . 

g − 1 
i=2 

Combining these relations we obtain that 

∗g/2⊗ 
⎛ 

att�ν1 = − 
i(g − i) 

νi 
0 . 

g − 1 
i=2 

The class of the Brill-Noether divisors (up to a constant multiple) follow from these 
calculations. 
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6. The ample and effective cones of the moduli space of curves 

The proof that Mg is of general type when g > 24 required us to know a two-

dimensional slice of the ample cone of Mg . Combining this with our knowledge of 
some special effective divisors we could conclude the proof. One may ask the more 
detailed questions: 

Question 6.1. In terms of the generators of the picard group �, ν1, . . . , ν∗g/2⊗ what 
is the ample cone of Mg ? What is the effective cone of Mg ? 

Almost nothing is known about the effective cone of Mg . Of course, everytime 
one writes down an effective divisor, one generates part of the effective cone. In 
recent years G. Farkas has spent a tremendous amount of effort to construct effective 
divisors on Mg . Despite these efforts our understanding of the effective cone of the 
effective cone of Mg has progressed little beyond examples of effective divisors. On 
the other hand, there is a beautiful conjecture giving a complete description of the 
ample cone of Mg,n. 

Remark 6.2. There is however one exception to our ignorance about the effective 
cone. The effective cone of M0,n is difficult to describe. However, if we quotient 
M0,n by the action of the symmetric group on n letters it becomes very easy to see 
that the effective cone is equal to the cone spanned by the boundary divisors. 

Exercise 6.3. Show that the effective cone of M0,n/Sn is the span of the boundary 
divisors as follows: Show that if D is effective, then the coefficient of Θ2 has to 
be non-negative (Hint: Consider a fixed P1 with n-marked points. Let the last 

Show that such curves cover an open marked point vary keeping the rest fixed. 
subset of M0,n/Sn and only intersect Θ2 among the boundary divisors.) Show 
that the coefficient of Θt has to be non-negative by induction on t. (Hint: Assume 
that the effective divisor does not contain any of the boundary divisors as a fixed 
component. Fix a reducible curve with t− 1 points on one component and n− t+ 1 
points on the other component. Attach the first component at a fixed point of the 
first curve to a variable point on the second curve. Considering this curve complete 
the induction.) 

Mg,n has a stratification according to topological type. Given a curve C we 
can associate the dual graph to C. For every irreducible component we associate 
a vertex. For every node connecting two irreducible components we associate an 
edge between the two vertices. For every self node we associate a loop based at 
the vertex corresponding to the irreducible component. Finally, we associate a tail 
emanating from the appropriate vertex for each marked point. We label the vertices 
by the geometric genus of the corresponding curve. 

We obtain a stratification of Mg,n by considering the loci of curves with a fixed 
dual graph. The codimension of a stratum is equal to the number of nodes that 
the curve represented by that graph has. The zero dimensional strata consist of 
curves with 3g − 3 + n nodes. We proved that every component of such a curve 
is a P1 whose normalization contains exactly three distinguished points. The one 
dimensional strata consist of curves with 3g − 4 + n nodes. Every component 
but one of a curve with 3g − 4 + n nodes is a P1 whose normalization has three 
distinguished points. The remaining component is either a P1 whose normalization 
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has four distinguished points or a genus one curve whose normalization has one 
distinguished point. We can view the one-dimensional loci as the images of M0,4 

and M1,1. These curves are often referred to as F-curves. 

The F-conjecture describes the ample cone of M g,n in terms of the F-curves. 

Conjecture 6.4 (The F-conjecture). A divisor on M g,n is ample if and only if it 
intersects positively with every F-curve. 

Of course, by Kleiman’s criterion every ample divisor intersects every curve pos
itively. The content of the F-conjecture is to say that checking for the F-curves 
suffices. Alternatively the conjecture may be formulated as saying that the Mori 
cone of curves on M g,n is generated by the F-curves. 

Observe that from this statement one can obtain very explicit inequalities de
scribing the ample cone of Mg,n. For simplicity we will give the description when 
n = 0. 

Exercise 6.5. Determine inequalities describing the ample cone of M g,n in terms 
of the generators of the Picard group when n ∼ 1. 

We begin by enumerating the F-curves. As already observed every component 
but one of a curve parameterized by a general point on an F-curve corresponds to a 
P1 with 3 distinguished points. If the remaining component is a genus 1 curve with 
one marked point, then when we separate the curve at this marked point we obtain 
a curve of genus g− 1 consisting of P1s with three distinguised points each and the 
genus one curve with one marked point. This curve is obtained by attaching a fixed 
curve with one marked point to M 1,1. From this it follows that C · νi = 0 for i ∼ 1. 
To calculate C · ν0 = 1/2, we observe that Finally, C · � = 1. 

If the remaining component is a genus 0 curve with 4 marked points, then the 
normalization restricted to that component might be injective. In this case if we 
split the curve at the distinguisehd points, we obtain four pieces of genus g1, g2, g3 

and g − g1 − g2 − g3. 

Exercise 6.6. Work out the intersections of the F-curves with the boundary com
ponents. Use these intersections to give inequalities that describe an upper bound 
on the ample cone. 

Problem 6.7. Show that every divisor in the cone dual to the F-curves is ample 
(or give a counterexample). 

Currently the F-conjecture is open. A. Gibney has verified the conjecture for 
Mg for many small genera. There is also a general result due to Gibney, Keel and 
Morrison [GKM] that reduces the general conjecture to the case of genus zero: 

Theorem 6.8. The F conjecture holds for M g,n if it holds for M0,m for m � g+n. 
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