18.726 Algebraic Geometry Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) Problem Set 10 (due Friday, April 24, in class)

Please submit *nine* of the following exercises (counting with multiplicities as indicated), including all items marked "Required". More exercises than usual this week are from Eisenbud-Harris; let me know if you need access to a copy.

- 1. Recall that a paracompact topological space is a Hausdorff space on which every open covering admits a locally finite refinement. Prove that if X is paracompact, then for every locally finite open covering $\mathfrak{U} = \{U_i\}_{i \in I}$ of X, there exists another open covering $\mathfrak{V} = \{V_i\}_{i \in I}$ of X with the same index set, such that for each $i \in I$, the closure of V_i in X is contained in U_i . (I include this mostly so that you may assume it for the next exercise. See Bourbaki's Topologie generale.)
- 2. Let X be a paracompact topological space.
 - (a) Let \mathfrak{U} , \mathfrak{V} be as in the previous exercise. Let $\mathcal{F} \to \mathcal{G}$ be a surjective morphism of sheaves of abelian groups on X. Prove that for any open subset T of X, any element $s \in \Gamma(\check{C}^i(\mathfrak{U},\mathcal{G}),T)$ lifts to $\Gamma(\check{C}^i(\mathfrak{W},\mathcal{F}),T)$ for some refinement \mathfrak{W} of \mathfrak{U} . (Hint: for each $x \in X$, one can find an open neighborhood W_x of x meeting only finitely many of the U_i . Show that you can choose W_x so that $x \in U_i$ implies $W_x \subseteq U_i, x \in V_i$ implies $W_x \subseteq V_i, W_x \cap V_i \neq \emptyset$ implies $x \in U_i$, and $x \in T$ implies $x \in U_i$ in the $x \in U_i$ implies $x \in U_i$.
 - (b) Use this to show that the functors

$$\mathcal{F} \mapsto \varinjlim_{\mathfrak{U}} \check{C}^{\cdot}(\mathfrak{U},\mathcal{F})$$

are exact, and so conclude that Čech cohomology and sheaf cohomology coincide on a paracompact space.

- 3. Hartshorne III.4.10.
- 4. Hartshorne III.5.1.
- 5. (Counts as two) Hartshorne III.5.8.
- 6. (Required) Hartshorne III.5.10.
- 7. (Counts as two) In this exercise, we classify vector bundles on \mathbb{P}^1_k , for k an algebraically closed field; this is due to Grothendieck, based on ideas of Serre. Throughout, let \mathcal{F} denote a finitely generated locally free quasicoherent sheaf on \mathbb{P}^1_k ; let d denote the rank of \mathcal{F} , and define the *degree* of \mathcal{F} as the unique integer n such that $\wedge^d \mathcal{F} \cong \mathcal{O}(n)$; this exists and is unique by Corollary II.6.17. (Compare Hartshorne exercise V.2.6 (sic).)

(a) Suppose that

$$0 \to \mathcal{O}(n_1) \to \mathcal{F} \to \mathcal{O}(n_2) \to 0$$

is a short exact sequence of quasicoherent sheaves and that $n_1 < n_2$. Prove that there exists a rank 1 subbundle of \mathcal{F} of degree $> n_1$. (Hint: twist to reduce to the case $n_1 = -1$, then take cohomology.)

(b) Suppose that

$$0 \to \mathcal{O}(n_1) \to \mathcal{F} \to \mathcal{O}(n_2) \to 0$$

is a short exact sequence of quasicoherent sheaves and that $n_1 \ge n_2$. Prove that the exact sequence splits. (Hint: twist to reduce to the case $n_2 = 0$, then take cohomology again.)

(c) Prove that \mathcal{F} contains a subsheaf isomorphic to $\mathcal{O}(n)$ for some n; deduce that \mathcal{F} admits a "composition series"

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_d = \mathcal{F}$$

by subsheaves with $\mathcal{F}_i/\mathcal{F}_{i-1}$ locally free of rank 1 for $i=1,\ldots,d$. (Hint: if \mathcal{F} is nonzero, then it admits a rational section.)

- (d) Prove that the set of degrees of rank 1 subsheaves of \mathcal{F} is bounded above. (Hint: compare to a filtration as in (c).)
- (e) Prove that \mathcal{F} admits a composition series with

$$\deg(\mathcal{F}_1/\mathcal{F}_0) \ge \deg(\mathcal{F}_2/\mathcal{F}_1) \ge \cdots \ge \deg(\mathcal{F}_d/\mathcal{F}_{d-1}).$$

(Hint: take \mathcal{F}_1 to be a subsheaf of \mathcal{F} with degree as large as possible.)

- (f) Prove that $\mathcal{F} \cong \bigoplus_{i=1}^d \mathcal{O}(n_i)$ for some integers n_1, \ldots, n_d .
- 8. (Required) Let X be a nonempty closed subscheme of \mathbb{P}_k^r , for k an algebraically closed field. Prove that for a generic hyperplane H, we have $\dim(X \cap H) < \dim(X)$; that is, the hyperplanes H for which this fails correspond to the points of a closed subscheme of the Grassmannian. (This Grassmannian is itself a projective space, in the coefficients describing H in terms of x_0, \ldots, x_n .)
- 9. (Eisenbud-Harris III-58) Let A be a noetherian ring. Let X be a closed subscheme of \mathbb{P}_A^r for some $r \geq 1$. Prove that for any nonnegative integer n, the function

$$t \mapsto \dim_{\kappa(t)} \Gamma(X_t, \mathcal{O}(n))$$

is upper semicontinuous; that is, for each $m \in \mathbb{Z}$, the set of points where the function has value at least m is closed in Spec A.

- 10. Eisenbud-Harris III-60.
- 11. (Required) The *Hilbert function* of a closed subscheme X of a projective space over a field k is the function on nonnegative integers defined by $n \mapsto \dim_k H^0(X, \mathcal{O}(n))$.

- (a) Find the Hilbert polynomial and the Hilbert function of all subschemes of the plane of length 3 over an algebraically closed field.
- (b) Give an example of two schemes with the same Hilbert polynomial but not the same Hilbert function.
- 12. Eisenbud-Harris III-66.
- 13. Check the numerical criterion for flatness explicitly for Hartshorne Example III.9.8.4.