18.704 Fall 2004 Homework 9 Solutions

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A Carmichael number is an integer $n \geq 1$ such that $a^{n-1} \equiv 1(\bmod n)$ holds for all a relatively prime to n. FYI: I believe the question of whether there exist infinitely many Carmichael numbers is an open problem.
(a) Suppose that $n=p_{1} p_{2} \ldots p_{r}$ is a product of r distinct primes. Show that n is a Carmichael number if and only if $p_{i}-1$ divides $n-1$ for each i (hint: look up Fermat's Little Theorem and the Chinese Remainder Theorem if you don't know these.) Find a product of three distinct primes which is a Carmichael number (there exist several possibilities with all three primes less than 20.)
(b) Show that no product of two distinct primes is a Carmichael number.

Solution. (a). Suppose that $n=p_{1} p_{2} \ldots p_{r}$, where the p_{i} are distinct primes, is a Carmichael number. For each i, the multiplicative group $\mathbb{F}_{p_{i}}^{*}$ of the finite field $\mathbb{F}_{p_{i}}$ is cyclic. This means for all a with $\operatorname{gcd}\left(a, p_{i}\right)=1$, that $a^{p_{i}-1} \equiv$ $1\left(\bmod p_{i}\right)$ (Fermat's little theorem). Moreover, we can choose a primitive root g_{i} for each p_{i}; i.e. g_{i} is a number with $\operatorname{gcd}\left(g_{i}, p_{i}\right)=1$ and such that $p_{i}-1$ is the minimal nonzero integer m such that $a^{m} \equiv 1\left(\bmod p_{i}\right)$ (i.e. g_{i} is a generator for the cyclic group $\mathbb{F}_{p_{i}}^{*}$.) Then by the Chinese Remainder Theorem, there is some integer g such that $g \equiv g_{i}\left(\bmod p_{i}\right)$ for all i. (In fancier language, the Chinese Remainder Theorem is just saying that the product group $\bigoplus_{i} \mathbb{Z} / p_{i} \mathbb{Z}$ is isomorphic to $\mathbb{Z} / n \mathbb{Z}$.) In particular, then, $\operatorname{gcd}(g, n)=1$, and so $g^{n-1} \equiv$ $1(\bmod n)$ by the definition of Carmichael number. Then for each $i, 1 \equiv g^{n-1} \equiv$ $g_{i}^{n-1}\left(\bmod p_{i}\right)$, and then $p_{i}-1$ divides $n-1$ by the definition of g_{i}.

Conversely, suppose that $p_{i}-1 \mid n-1$ for all i. Then if $\operatorname{gcd}(a, n)=1$, in particular $\operatorname{gcd}\left(a, p_{i}\right)=1$ for all i. So $a^{p_{i}-1} \equiv 1\left(\bmod p_{i}\right)$ by Fermat's little theorem, and then $a^{n-1} \equiv 1\left(\bmod p_{i}\right)$ for each i. Finally, since the p_{i} are distinct primes this implies by the Chinese Remainder Theorem again that $a^{n-1} \equiv$ $1(\bmod n)$.

To find a Carmichael number, one can just play around a bit. The smallest is $561=(3)(11)(17)$.
(b). Suppose that $n=p q$ is a Carmichael number, where p and q are distinct primes. By part (a), this means that $p-1$ and $q-1$ both divide $p q-1$. But we
can write $p q-1=p q-q+q-1=q(p-1)+q-1$, and so $p-1$ divides $q-1$. A symmetric argument shows that $q-1$ divides $p-1$. But this can't happen unless $p-1=q-1$, but then $p=q$ which is a contradiction.

Remark. As both Isabel Lugo and Jacob Fox pointed out, it is no longer an open problem whether there exist infinitely many Carmichael numbers. In fact there are a lot of them: for large n, there are at least $n^{2 / 7}$ Carmichael numbers less than or equal to n. For a summary of what is currently known about Carmichael numbers, see
http://mathworld.wolfram.com/CarmichaelNumber.html.
2. Do Exercise 5.5 (a) and (b).

Solution. (a) Let p be a prime; we are looking for integer solutions to $x^{3}+y^{3}=p$. Factor $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$.

For use in both this problem and problem 3 below, we prove a few facts about the factors appearing here. First of all, $x^{2}-x y+y^{2} \geq 0$ for all $x, y \in \mathbb{Z}$. This is because $x^{2}-x y+y^{2} \geq(x-y)^{2}$ if x and y have the same sign, and $x^{2}-x y+y^{2} \geq(x+y)^{2}$ if x and y have different signs.

Next, we claim that for almost all $x, y \in \mathbb{Z}$ (with a few exceptions), $x+y<$ $x^{2}-x y+y^{2}$. To prove this claim, first note that if x and y are both negative, we can just replace them by their opposites, so we might as well assume that at most one of x and y is negative, and by symmetry that one might as well be x. So we only have two cases:

Case 1: x, y both ≥ 0. If also $x>y$, then $x^{2}-x y+y^{2}=x(x-y)+y^{2} \geq$ $x+y^{2} \geq x+y$, with equality only if $(x, y)=(1,0)$ or $(2,1)$. If $y>x$, a symmetric argument gives $x^{2}-x y+y^{2} \geq x+y$ with equality only if $(x, y)=(0,1)$ or $(1,2)$. If $x=y$, then $x^{2} \geq 2 x$ unless $(x, y)=(1,1)$, and equality occurs only if $(x, y)=(0,0)$ or $(2,2)$.

Case 2: $x<0 \leq y$. In this case, $x^{2}-x y+y^{2}=x^{2}+y(y-x) \geq x^{2}+y \geq x+y$. Note that equality never occurs here.

To summarize, we have shown the following:
Lemma 0.1 Let $x, y \in \mathbb{Z}$. Then $x+y \leq x^{2}-x y+y^{2}$ unless $(x, y)=(1,1)$. Furthermore, equality occurs if and only if

$$
(x, y) \in\{(0,0),(0,1),(1,0),(2,1),(1,2),(2,2)\}
$$

Now back to Problem 2. Suppose that $(x+y)\left(x^{2}-x y+y^{2}\right)=p$ where p is prime. Then either $p=|x+y|$ and $\left|x^{2}-x y+y^{2}\right|=1$ or $1=|x+y|$ and $\left|x^{2}-x y+y^{2}\right|=p$. The first case is impossible by the Lemma unless $x=y=1$ and $p=2$. Note that if $p=2$ then in fact $(1,1)$ is the only solution to $x^{3}+y^{3}=2$.

Assuming now that $p \neq 2$, we must have $|x+y|=1$ and $\left|x^{2}-x y+y^{2}\right|=p$. Since we showed above that $x^{2}-x y+y^{2}$ is always nonnegative, $x+y=1$ and $x^{2}-x y+y^{2}=p$. Then substituting $y=1-x$, we have $x^{2}-x(1-x)+(1-x)^{2}=p$,
and so $3 x^{2}-3 x+1=p$. In particular, setting $u=-x$, we see that $p=$ $3 u^{2}+3 u+1$ has the required form. In this case $(-u, u+1)$ is a solution. Note that $3(-u-1)^{2}+3(-u-1)+1=3 u^{2}+3 u+1$, so we need not worry about negative u, as long as we also include the solution $(u+1,-u)$ for each positive u.
(b) The only positive u for which $3 u^{2}+3 u+1$ is less than 300 are $u=0,1,2, \ldots, 9$. The possible values for p we get in this range are $1,7,19,37,61,91,127,169,217$, and 271 . Only $7,19,37,61,127,271$ are primes.

So for only 7 primes less than 300 does the equation have any solutions. These solutions are $(n,-n+1)$ and $(-n+1, n)$ for $n=2,3,4,5,7,10$, corresponding to the primes $7,19,37,61,127,271$, and the additional solution $(1,1)$ for the prime $p=2$.

3. Do Exercise 5.4 from the text.

Solution. We are looking for solutions to the equation $x^{3}+y^{3}=m$, where we count (u, v) and (v, u) as distinct solutions if $u \neq v$. Let $d(m)$ be the number of distinct divisors of m.

Factor the equation to give $(x+y)\left(x^{2}-x y+y^{2}\right)=m$. As we saw in Problem $2, x^{2}-x y+y^{2}$ is always nonnegative. So we must have a factorization $m=d_{1} d_{2}$ with $d_{1}, d_{2} \geq 0$ and $x+y=d_{1}, x^{2}-x y+y^{2}=d_{2}$. Moreover, by Lemma 0.1 , $d_{2}<d_{1}$ is possible only if $x=y=1$, but then $m=2$. We know that if $m=2$ then $(1,1)$ is the only solution, so there are certainly at most $d(2)=2$ solutions.

So assume now that $m \geq 2$. Consider the exceptional points (x, y) in the list of Lemma 0.1 for which $x+y=x^{2}-x y+y^{2}$. Given one of these points, we have $x+y \in\{0,1,3,4\}$ and so $m \in\{0,1,9,16\} . m=0$ and $m=1$ are not allowed by hypothesis. If $m=9$, then we calculate by hand that $(1,2)$ and $(2,1)$ are the only solutions. If $m=16$, we calculate that $(2,2)$ is the only solution. So certainly there are at most $d(m)$ solutions for each of these m.

Finally, we consider $m \geq 2, m \neq 9,16$. Then given any factorization $m=$ $d_{1} d_{2}$ with $x+y=d_{1}, x^{2}-x y+y^{2}=d_{2}$, it follows from Lemma 0.1 that in fact $d_{1}<d_{2}$. There are at most $d(m) / 2$ possible possible factorizations $m=d_{1} d_{2}$ with $d_{1}<d_{2}$. For each of them, substituting $y=d_{1}-x$ into $x^{2}-x y+y^{2}=d_{2}$, we get a quadratic in x, which has at most 2 integer solutions for x, and then y is determined. So there at most 2 integer points corresponding to each of the $d(m) / 2$ factorizations, and thus at most $d(m)$ possible integer points.

