18.704 Fall 2004 Homework 9

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A Carmichael number is an integer $n \geq 1$ such that $a^{n-1} \equiv 1(\bmod n)$ holds for all a relatively prime to n. FYI: I believe the question of whether there exist infinitely many Carmichael numbers is an open problem.
(a) Suppose that $n=p_{1} p_{2} \ldots p_{r}$ is a product of r distinct primes. Show that n is a Carmichael number if and only if $p_{i}-1$ divides $n-1$ for each i (hint: look up Fermat's Little Theorem and the Chinese Remainder Theorem if you don't know these.) Find a product of three distinct primes which is a Carmichael number (there exist several possibilities with all three primes less than 20.)
(b) Show that no product of two distinct primes is a Carmichael number.
2. Do Exercise 5.5 (a) and (b) from the text.
3. Do Exercise 5.4 from the text.
