18.704 Fall 2004 Homework 8 Solutions

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A nonsingular projective conic with at least one point over the field \mathbb{F}_p has exactly p+1 projective points; the reason is that one can project onto a line as is argued on page 109 of the text. In this problem we see that the same is not true for singular conics. Let $p \neq 2$ be a prime, and let C be the conic given by the homogeneous equation $C: aX^2 + bXY + cY^2 = dZ^2$ where $a, b, c, d \in \mathbb{F}_p$ and $a, b, d \neq 0$. Let $\#C(\mathbb{F}_p)$ be the number of points on C in projective space over \mathbb{F}_p .

(a) Note that C is the given by the vanishing of $F(X, Y, Z) = aX^2 + bXY + cY^2 - dZ^2$ in \mathbb{P}^2 . Recall that C is nonsingular at a point as long as not all partial derivatives of F vanish there. Show that C is nonsingular if and only if $b^2 = 4ac$.

(b) Assume that C is singular. Then do Exercise 4.1(b) from the text. For p = 3, find choices of a, b, c, d for which each possibility occurs.

Solution. (a) The partial derivatives are $\partial F/\partial X = 2aX + bY$, $\partial F/\partial Y = bX + 2cY$, and $\partial F/\partial Z = -2dZ$. If all of these are zero at a point, then (since we assume $d \neq 0$ and $p \neq 2$), Z = 0. Then $aX^2 + bXY + cY^2 = 0$ and 2aX + bY = 0, so $Y = -2ab^{-1}X$, so $aX^2 + -2aX^2 + 4ca^2b^{-2}X^2 = 0$. If X = 0, and then Y = 0, but [0, 0, 0] is not a point in projective space, so this is a contradiction. Thus $-a + 4ca^2b^{-2} = 0$, so $4ca^2 - ab^2 = 0$ and so (since $a \neq 0$) $4ca - b^2 = 0$. The converse is similar.

(b) Since C is singular, by part (a) we have $b^2 - 4ac = 0$. The reason this is special is that the left hand side of our equation factors:

$$aX^{2} + bXY + cY^{2} = (2aX - bY)(2aX - bY) = dZ^{2}.$$

First we count the points at infinity. So if Z = 0, then 2aX = bY. So [b, -2a, 0] is a point at infinity, and since scalar multiples give the same point of projective space, this is the only point at infinity.

Now we may assume Z = 1 and look for affine points (x, y) with $(2ax-by)^2 = d$. If d is not a square in \mathbb{F}_p , then this has no solutions. So in this case the

point at infinity is the only solution and $\#C(\mathbb{F}_p) = 1$. Otherwise, d is a nonzero square in \mathbb{F}_p , say $d = e^2$. Then $2ax - by = \pm e$. Since we assume $b \neq 0$, for each possible choice of x, we get the two solutions $y = b^{-1}(2ax \pm e)$. Since x can vary over the p elements of \mathbb{F}_p , we get 2p affine points this way (note that the two elements $2ax \pm e$ are always distinct, otherwise 2e = 0 and since $p \neq 2$, e = 0, a contradiction.) Adding in the point at infinity, we get 2p + 1 points total on C.

When p = 3, we get both possibilities by choosing d = 1 (a square) and d = 2 (not a square). So (for example) $C: X^2 + 2XY + Y^2 = Z^2$ has 7 solutions in \mathbb{F}_3 , but $C: X^2 + 2XY + Y^2 = 2Z^2$ has 1 solution in \mathbb{F}_3 .

2. (a) Let C be the projective curve $x^3 + y^3 + z^3 = 0$ which is the subject of Gauss's theorem. Calculate $\#C(\mathbb{F}_p)$ for p = 307 (you don't need a computer; see the suggestions on page 118.)

(b) Let p be a prime with $p \equiv 2 \pmod{3}$, and let $c \in \mathbb{F}_p$. Prove that the curve $C: y^2 = x^3 + c$ satisfies $\#C(\mathbb{F}_p) = p + 1$.

Solution. (a) By the result of Gauss's Theorem, $\#C(\mathbb{F}_p)$ is equal to p+1+A, where $4p = A^2 + 27B^2$ and A is congruent to 1 mod 3. So we need to find A and B where p = 307. As discussed on page 118, p+1+A is always divisible by 9. So $A \equiv 7 \pmod{9}$. We try $A = 7, 16, 23 \dots$ If A = 7, then $27B^2 = 1079$, but 1079 is not a multiple of 27. Trying A = 16, then $27B^2 = 972$, and $B^2 = 36$ and B = 6 so we're done: $4(307) = 16^2 + 27(6)^2$. So $\#C(\mathbb{F}_p) = 308 + 16 = 324$.

(b) As we saw in the proof of Gauss's Theorem, for a prime p which is not congruent to 1 mod 3, every element of \mathbb{F}_p has a unique cube root. Therefore as x varies over the elements in \mathbb{F}_p , $x^3 + c$ varies over all of the elements of \mathbb{F}_p . Now if p = 2 then the result can be checked directly, so assume from now on that p is an odd prime. Then if $x^3 + c$ is a nonzero square in \mathbb{F}_p then there will be two points of the form (x, y) on C; if $x^3 + c = 0$ then there is one corresponding point (x, 0) on C; and if $x^3 + c$ is not a square then there are no points on C with that x-coordinate. Now since p is odd, exactly 1/2 of the elements of \mathbb{F}_p^* are squares. So we get 2(1/2)(p-1) + 1 = p points on the curve in the affine plane. Throwing in the point at infinity \mathcal{O} , we get p + 1 points on C.

3. In this exercise we work over \mathbb{Q} , and revisit points of finite order again using reduction modulo p as a tool. The equation we are interested in is

 $C: y^2 = x^3 + bx$ for some nonzero $b \in \mathbb{Z}$.

Let $\Phi \subset C(\mathbb{Q})$ be the subgroup consisting of all rational points of finite order on C.

(a) In Exercise 4.8, p. 142, it is shown that if p is any prime number such that $p \equiv 3 \pmod{4}$, and b is not equal to 0 in \mathbb{F}_p^* , then the curve $C: y^2 = x^3 + bx$

satisfies $\#C(\mathbb{F}_p) = p + 1$. Assume this without proof, and use it to show that the order of the group Φ is 2 or 4.

(b) Recall from section III.4 that the multiplication by 2 map on C is decomposed as a composition $\psi \circ \phi$ where $\phi : C \to \overline{C}$ and $\psi : \overline{C} \to C$ are given by explicit formulas on p. 79. Use these formulas to show that there exists a rational point $P \in C$ such that 2P = (0,0) if and only if $b = 4d^4$ for some integer d.

(c) Show that the group structure of Φ is given precisely by the following table:

$$\Phi = \begin{cases} \mathbb{Z}/4\mathbb{Z} & \text{if } b = 4d^4 \text{ for some } d \in \mathbb{Z} \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } -b \text{ is a square} \\ \mathbb{Z}/2\mathbb{Z} & \text{otherwise.} \end{cases}$$

Solution. By exercise 4.8 which we were asked to quote, it follows that $C(\mathbb{F}_p) = p+1$ for all p which are congruent to 3 mod 4 and which do not divide b. Then by the reduction mod p theorem in Section IV.3, we see that $N = |\Phi|$ divides p+1 for all primes $p \equiv 3 \pmod{4}$ such that p > b. Rephrasing, we have that every prime greater than b which is congruent to 3 mod 4 is also congruent to $-1 \mod N$. I hope your intuition told you this is not likely to happen if N is not equal to 1, 2, or 4.

To actually prove what we want, we can quote a famous theorem (Sorry not to warn you about this.) Dirichlet proved in the 1800's that every arithmetic progression $\{an+b|n \in \mathbb{N}\}$, where a and b are positive integers with gcd(a, b) =1, contains infinitely many prime numbers. So we see that if $N \ge 5$, then there are infinitely many primes in the progression $\{4Nn + 3|n \ge 1\}$, and these are all primes which are congruent to 3 mod 4, but congruent to $3 \neq -1 \pmod{N}$. This is a contradiction to what we showed above. So $N \le 4$. But now N = 3and N = 1 are no good, since we know that Φ has the point (0,0) of order 2. So N = 2 or 4.

(b). Let \overline{C} be the curve $y^2 = x^3 - 4bx$, and let $\phi: C \to \overline{C}$ and $\psi: \overline{C} \to C$ be the maps given in Section III.4. Suppose $P \in C$ is a point such that 2P = (0, 0). Now multiplication by 2 is the same thing as $\psi \circ \phi$. So there must be some rational point $Q = (w, z) \in \overline{C}$ such that $\psi(Q) = (0, 0)$. Examining the formula for ψ , we see that this implies that Q = (w, 0) for some nonzero w such that $w^2 = 4b$. So b is a square; write $b = f^2$ for some integer $f \ge 1$. Now we also must have a point $P = (x, y) \in C$ such that $\phi(P) = Q = (w, 0)$. Examining the formula for ϕ , we see that if y = 0 then $\phi(P) \in \{T, \mathcal{O}\}$. So $y \neq 0$, and this implies by the formula that w is a perfect square, say $w = e^2$. Then $w^2 = e^4 = 4b$. So $16b = 4e^4$ and then writing e = 2d, we have $b = 4d^4$ as required. Conversely, if $b = 4d^4$ for some integer d then one may check that setting $P = (2d^2, 4d^3)$, we have 2P = (0, 0).

(c). By Part (a), we have $|\Phi| = 2$ or $|\Phi| = 4$.

Suppose that Φ contains 4 points of order dividing 2. We know the points of order 2 are exactly those points with 0 y-coordinate, and there exists such a rational point other than (0,0) if and only if $0 = x(x^2+b)$ has a nonzero solution for x, i.e. $-b = d^2$ is a square. In this case we get $\Phi = \{(\pm d, 0), (0, 0), \mathcal{O}\}$, and since every point has order dividing 2, we must have $\Phi \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. This is line 2 of the table.

So we may assume now that the only rational points of order dividing 2 on C are (0,0) and \mathcal{O} . Suppose however that still $|\Phi| = 4$. Then Φ must be cyclic of order 4, and there is some rational point Q with $\Phi = \{Q, (0,0), 3Q, \mathcal{O}\}$ where Q has order 4. In particular, 2Q = (0,0), and by part (b), such a Q exists if and only if $b = 4d^4$ for some d. In this case $\Phi \cong \mathbb{Z}/4\mathbb{Z}$ and this is line 1 of the table.

Finally, we have the case where $|\Phi| = 2$. So in this case we must have $\Phi = \{\mathcal{O}, (0, 0)\}$ and $\Phi \cong \mathbb{Z}/2\mathbb{Z}$. This happens for all other choices of b, and is line 3 of the table.