### 18.704 Fall 2004 Homework 8 Solutions

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A nonsingular projective conic with at least one point over the field $\mathbb{F}_{p}$ has exactly $p+1$ projective points; the reason is that one can project onto a line as is argued on page 109 of the text. In this problem we see that the same is not true for singular conics. Let $p \neq 2$ be a prime, and let $C$ be the conic given by the homogeneous equation $C: a X^{2}+b X Y+c Y^{2}=d Z^{2}$ where $a, b, c, d \in \mathbb{F}_{p}$ and $a, b, d \neq 0$. Let $\# C\left(\mathbb{F}_{p}\right)$ be the number of points on $C$ in projective space over $\mathbb{F}_{p}$.
(a) Note that $C$ is the given by the vanishing of $F(X, Y, Z)=a X^{2}+b X Y+$ $c Y^{2}-d Z^{2}$ in $\mathbb{P}^{2}$. Recall that $C$ is nonsingular at a point as long as not all partial derivatives of $F$ vanish there. Show that $C$ is nonsingular if and only if $b^{2}=4 a c$.
(b) Assume that $C$ is singular. Then do Exercise 4.1(b) from the text. For $p=3$, find choices of $a, b, c, d$ for which each possibility occurs.

Solution. (a) The partial derivatives are $\partial F / \partial X=2 a X+b Y, \partial F / \partial Y=$ $b X+2 c Y$, and $\partial F / \partial Z=-2 d Z$. If all of these are zero at a point, then (since we assume $d \neq 0$ and $p \neq 2), Z=0$. Then $a X^{2}+b X Y+c Y^{2}=0$ and $2 a X+b Y=0$, so $Y=-2 a b^{-1} X$, so $a X^{2}+-2 a X^{2}+4 c a^{2} b^{-2} X^{2}=0$. If $X=0$, and then $Y=0$, but $[0,0,0]$ is not a point in projective space, so this is a contradiction. Thus $-a+4 c a^{2} b^{-2}=0$, so $4 c a^{2}-a b^{2}=0$ and so (since $a \neq 0$ ) $4 c a-b^{2}=0$. The converse is similar.
(b) Since $C$ is singular, by part (a) we have $b^{2}-4 a c=0$. The reason this is special is that the left hand side of our equation factors:

$$
a X^{2}+b X Y+c Y^{2}=(2 a X-b Y)(2 a X-b Y)=d Z^{2}
$$

First we count the points at infinity. So if $Z=0$, then $2 a X=b Y$. So $[b,-2 a, 0]$ is a point at infinity, and since scalar multiples give the same point of projective space, this is the only point at infinity.

Now we may assume $Z=1$ and look for affine points $(x, y)$ with $(2 a x-b y)^{2}=$ $d$. If $d$ is not a square in $\mathbb{F}_{p}$, then this has no solutions. So in this case the
point at infinity is the only solution and $\# C\left(\mathbb{F}_{p}\right)=1$. Otherwise, $d$ is a nonzero square in $\mathbb{F}_{p}$, say $d=e^{2}$. Then $2 a x-b y= \pm e$. Since we assume $b \neq 0$, for each possible choice of $x$, we get the two solutions $y=b^{-1}(2 a x \pm e)$. Since $x$ can vary over the $p$ elements of $\mathbb{F}_{p}$, we get $2 p$ affine points this way (note that the two elements $2 a x \pm e$ are always distinct, otherwise $2 e=0$ and since $p \neq 2, e=0$, a contradiction.) Adding in the point at infinity, we get $2 p+1$ points total on $C$.

When $p=3$, we get both possibilities by choosing $d=1$ (a square) and $d=2$ (not a square). So (for example) $C: X^{2}+2 X Y+Y^{2}=Z^{2}$ has 7 solutions in $\mathbb{F}_{3}$, but $C: X^{2}+2 X Y+Y^{2}=2 Z^{2}$ has 1 solution in $\mathbb{F}_{3}$.
2. (a) Let $C$ be the projective curve $x^{3}+y^{3}+z^{3}=0$ which is the subject of Gauss's theorem. Calculate $\# C\left(\mathbb{F}_{p}\right)$ for $p=307$ (you don't need a computer; see the suggestions on page 118.)
(b) Let $p$ be a prime with $p \equiv 2(\bmod 3)$, and let $c \in \mathbb{F}_{p}$. Prove that the curve $C: y^{2}=x^{3}+c$ satisfies $\# C\left(\mathbb{F}_{p}\right)=p+1$.

Solution. (a) By the result of Gauss's Theorem, $\# C\left(\mathbb{F}_{p}\right)$ is equal to $p+1+A$, where $4 p=A^{2}+27 B^{2}$ and $A$ is congruent to $1 \bmod 3$. So we need to find $A$ and $B$ where $p=307$. As discussed on page $118, p+1+A$ is always divisible by 9 . So $A \equiv 7(\bmod 9)$. We try $A=7,16,23 \ldots$ If $A=7$, then $27 B^{2}=1079$, but 1079 is not a multiple of 27 . Trying $A=16$, then $27 B^{2}=972$, and $B^{2}=36$ and $B=6$ so we're done: $4(307)=16^{2}+27(6)^{2}$. So $\# C\left(\mathbb{F}_{p}\right)=308+16=324$.
(b) As we saw in the proof of Gauss's Theorem, for a prime $p$ which is not congruent to $1 \bmod 3$, every element of $\mathbb{F}_{p}$ has a unique cube root. Therefore as $x$ varies over the elements in $\mathbb{F}_{p}, x^{3}+c$ varies over all of the elements of $\mathbb{F}_{p}$. Now if $p=2$ then the result can be checked directly, so assume from now on that $p$ is an odd prime. Then if $x^{3}+c$ is a nonzero square in $\mathbb{F}_{p}$ then there will be two points of the form $(x, y)$ on $C$; if $x^{3}+c=0$ then there is one corresponding point $(x, 0)$ on $C$; and if $x^{3}+c$ is not a square then there are no points on $C$ with that $x$-coordinate. Now since $p$ is odd, exactly $1 / 2$ of the elements of $\mathbb{F}_{p}^{*}$ are squares. So we get $2(1 / 2)(p-1)+1=p$ points on the curve in the affine plane. Throwing in the point at infinity $\mathcal{O}$, we get $p+1$ points on $C$.
3. In this exercise we work over $\mathbb{Q}$, and revisit points of finite order again using reduction modulo $p$ as a tool. The equation we are interested in is

$$
C: y^{2}=x^{3}+b x \text { for some nonzero } b \in \mathbb{Z}
$$

Let $\Phi \subset C(\mathbb{Q})$ be the subgroup consisting of all rational points of finite order on $C$.
(a) In Exercise 4.8, p. 142, it is shown that if $p$ is any prime number such that $p \equiv 3(\bmod 4)$, and $b$ is not equal to 0 in $\mathbb{F}_{p}^{*}$, then the curve $C: y^{2}=x^{3}+b x$
satisfies $\# C\left(\mathbb{F}_{p}\right)=p+1$. Assume this without proof, and use it to show that the order of the group $\Phi$ is 2 or 4 .
(b) Recall from section III. 4 that the multiplication by 2 map on $C$ is decomposed as a composition $\psi \circ \phi$ where $\phi: C \rightarrow \bar{C}$ and $\psi: \bar{C} \rightarrow C$ are given by explicit formulas on p. 79. Use these formulas to show that there exists a rational point $P \in C$ such that $2 P=(0,0)$ if and only if $b=4 d^{4}$ for some integer $d$.
(c) Show that the group structure of $\Phi$ is given precisely by the following table:

$$
\Phi=\left\{\begin{array}{l}
\mathbb{Z} / 4 \mathbb{Z} \text { if } b=4 d^{4} \text { for some } d \in \mathbb{Z} \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \text { if }-b \text { is a square } \\
\mathbb{Z} / 2 \mathbb{Z} \text { otherwise. }
\end{array}\right.
$$

Solution. By exercise 4.8 which we were asked to quote, it follows that $C\left(\mathbb{F}_{p}\right)=p+1$ for all $p$ which are congruent to $3 \bmod 4$ and which do not divide $b$. Then by the reduction $\bmod p$ theorem in Section IV.3, we see that $N=|\Phi|$ divides $p+1$ for all primes $p \equiv 3(\bmod 4)$ such that $p>b$. Rephrasing, we have that every prime greater than $b$ which is congruent to $3 \bmod 4$ is also congruent to $-1 \bmod N$. I hope your intuition told you this is not likely to happen if $N$ is not equal to 1,2 , or 4 .

To actually prove what we want, we can quote a famous theorem (Sorry not to warn you about this.) Dirichlet proved in the 1800's that every arithmetic progression $\{a n+b \mid n \in \mathbb{N}\}$, where $a$ and $b$ are positive integers with $\operatorname{gcd}(a, b)=$ 1 , contains infinitely many prime numbers. So we see that if $N \geq 5$, then there are infinitely many primes in the progression $\{4 N n+3 \mid n \geq 1\}$, and these are all primes which are congruent to $3 \bmod 4$, but congruent to $3 \neq-1(\bmod N)$. This is a contradiction to what we showed above. So $N \leq 4$. But now $N=3$ and $N=1$ are no good, since we know that $\Phi$ has the point $(0,0)$ of order 2 . So $N=2$ or 4 .
(b). Let $\bar{C}$ be the curve $y^{2}=x^{3}-4 b x$, and let $\phi: C \rightarrow \bar{C}$ and $\psi: \bar{C} \rightarrow C$ be the maps given in Section III.4. Suppose $P \in C$ is a point such that $2 P=(0,0)$. Now multiplication by 2 is the same thing as $\psi \circ \phi$. So there must be some rational point $Q=(w, z) \in \bar{C}$ such that $\psi(Q)=(0,0)$. Examining the formula for $\psi$, we see that this implies that $Q=(w, 0)$ for some nonzero $w$ such that $w^{2}=4 b$. So $b$ is a square; write $b=f^{2}$ for some integer $f \geq 1$. Now we also must have a point $P=(x, y) \in C$ such that $\phi(P)=Q=(w, 0)$. Examining the formula for $\phi$, we see that if $y=0$ then $\phi(P) \in\{T, \mathcal{O}\}$. So $y \neq 0$, and this implies by the formula that $w$ is a perfect square, say $w=e^{2}$. Then $w^{2}=e^{4}=4 b$. So $16 b=4 e^{4}$ and then writing $e=2 d$, we have $b=4 d^{4}$ as required. Conversely, if $b=4 d^{4}$ for some integer $d$ then one may check that setting $P=\left(2 d^{2}, 4 d^{3}\right)$, we have $2 P=(0,0)$.
(c). By Part (a), we have $|\Phi|=2$ or $|\Phi|=4$.

Suppose that $\Phi$ contains 4 points of order dividing 2 . We know the points of order 2 are exactly those points with 0 y -coordinate, and there exists such a rational point other than $(0,0)$ if and only if $0=x\left(x^{2}+b\right)$ has a nonzero solution for $x$, i.e. $-b=d^{2}$ is a square. In this case we get $\Phi=\{( \pm d, 0),(0,0), \mathcal{O}\}$, and since every point has order dividing 2 , we must have $\Phi \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. This is line 2 of the table.

So we may assume now that the only rational points of order dividing 2 on $C$ are $(0,0)$ and $\mathcal{O}$. Suppose however that still $|\Phi|=4$. Then $\Phi$ must be cyclic of order 4 , and there is some rational point $Q$ with $\Phi=\{Q,(0,0), 3 Q, \mathcal{O}\}$ where $Q$ has order 4 . In particular, $2 Q=(0,0)$, and by part (b), such a $Q$ exists if and only if $b=4 d^{4}$ for some $d$. In this case $\Phi \cong \mathbb{Z} / 4 \mathbb{Z}$ and this is line 1 of the table.

Finally, we have the case where $|\Phi|=2$. So in this case we must have $\Phi=\{\mathcal{O},(0,0)\}$ and $\Phi \cong \mathbb{Z} / 2 \mathbb{Z}$. This happens for all other choices of $b$, and is line 3 of the table.

