18.704 Fall 2004 Homework 6 Solutions

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. Do Exercise 3.4 of the text, which asks you to prove the upper bound in Lemma $3^{\prime}(\mathrm{b})$. Advice: use the proof of Lemma 2 in section III. 2 as a model.)

Solution. This really is very similar to the endgame of the proof of Lemma 2, but easier. Let H and h be the height functions defined in section III.1. Let $\phi(x), \psi(x)$ be two polynomials with no common roots, and let d be the maximum of the degrees of ϕ, ψ.

Let $q=m / n$ in lowest terms, so $H(q)=\max \{|m|,|n|\}$ by definition. Assume that $\psi(q) \neq 0$.

Write $\phi(x)=\sum_{i=0}^{d} a_{i} x^{i}$ and $\psi(x)=\sum_{i=0}^{d} b_{i} x^{i}$. Then we define

$$
\Phi(q)=n^{d} \phi(q)=\sum_{i=0}^{d} a_{i} m^{i} n^{d-i}, \text { and } \Psi(q)=n^{d} \psi(q)=\sum_{i=0}^{d} b_{i} m^{i} n^{d-i}
$$

which are both integers. Now $\phi(q) / \psi(q)=\Phi(q) / \Psi(q)$. Although the fraction $\Phi(q) / \Psi(q)$ might not be in lowest terms, we still have

$$
H\left(\frac{\phi(q)}{\psi(q)}\right) \leq \max (|\Phi(q)|,|\Psi(q)|)
$$

and moreover,

$$
|\Phi(q)| \leq\left(\sum_{i=0}^{d}\left|a_{i}\right||m|^{i}|n|^{d-i}\right) \leq\left(\sum_{i=0}^{d}\left|a_{i}\right|\right) H(q)^{d}
$$

Similarly,

$$
|\Psi(q)| \leq\left(\sum_{i=0}^{d}\left|b_{i}\right|\right) H(q)^{d}
$$

So setting $A=\max \left(\sum_{i=1}^{d}\left|a_{i}\right|, \sum_{i=1}^{d}\left|b_{i}\right|\right)$, we have

$$
H\left(\frac{\phi(q)}{\psi(q)}\right) \leq A H(q)^{d}
$$

so taking logs we get

$$
h\left(\frac{\phi(q)}{\psi(q)}\right) \leq d h(q)+\log A
$$

and setting $\kappa_{2}=\log A$ we've proven the bound requested.
2. The Nagell-Lutz theorem is not the last word when it comes to finding points of finite order on a nonsingular cubic curve C, but in special cases one can prove further necessary conditions. In this problem assume that C is a nonsingular cubic curve of the special form $y^{2}=x^{3}+a x^{2}+b x$, with $a, b \in \mathbb{Z}$.
(a) As a warmup, prove the following fact: Let $\theta: G \rightarrow H$ be a homomorphism of commutative groups. If $g \in G$ has finite order, then $\theta(g) \in H$ has finite order.
(b) Now do Exercise 3.7(a) of the text.

Solution. (a) This part is really only here to give you a hint as to how to proceed in part (b). Anyway, the proof is trivial: g has finite order means that $m g=e$ for some $m \geq 1$, where e is the identity of G. Then $m \theta(g)=\theta(m g)=$ $\theta(e)=e^{\prime}$, where e^{\prime} is the identity of H. This says that $\theta(g)$ has finite order in H.
(b) The key observation to make is that the homomorphism $\phi: C \rightarrow \bar{C}$ defined in section III. 4 is helpful here. There \bar{C} is defined to be the elliptic curve $y^{2}=x^{3}+\bar{a} x^{2}+\bar{b} x$, where $\bar{a}=-2 a$ and $\bar{b}=a^{2}-4 b$. The map ϕ is defined on coordinates as

$$
\phi(x, y)=\left(y^{2} / x^{2}, y\left(x^{2}-b\right) / x^{2}\right)
$$

for all points $(x, y) \in C$ not equal to \mathcal{O} or $T=(0,0)$. We also note that $y^{2} / x^{2}=x+a+(b / x)$ since (x, y) is a point on C.

Now let $P=(x, y) \in C(\mathbb{Q})$ have finite order. By the Nagell-Lutz theorem, x and y are integers. By part (a), $\phi(P)$ has finite order in \bar{C}. Since we assume $y \neq 0$, the formula above for ϕ works. Also, $\phi(P)$ must have integer coordinates, by the Nagell-Lutz theorem applied to \bar{C}. So $x+a+(b / x)$ is an integer. Since x and a are also integers, this implies that x divides b. Moreover, since $x+$ $a+(b / x)=y^{2} / x^{2}$, we must also have that x divides y. Then the quantity $y^{2} / x^{2}=(y / x)^{2}$ is a perfect square in \mathbb{Z}, i.e. $x+a+(b / x)$ is a perfect square.
3. With the help of the results of problem $2(\mathrm{~b})$ above, in this problem we will generalize a problem from an earlier homework set.
(a) Find all possible primes p and integers $m \geq 0$ such that $p^{m}+1$ is a perfect square.
(b) Let C be the curve $y^{2}=x^{3}+p^{m} x$ for some prime $p \geq 5$ and $m \geq 1$. Find all of the rational points of finite order on C (don't forget \mathcal{O}).
(c) It is not hard to find all of the rational points of finite order on $y^{2}=$ $x^{3}+p^{m} x$ when $p=2$ or $p=3$, but the calculation is a bit tedious. So I'll ask you just to do a special case: find all of the rational points of finite order on $y^{2}=x^{3}+64 x$.

Solution.

(a). Suppose that $p^{m}+1=n^{2}$ for some integer $n \geq 1$, prime p, and $m \geq 0$. Then $p^{m}=n^{2}-1=(n+1)(n-1)$. Suppose that $n-1>1$. Then also $n+1>1$, and so p divides both $n+1$ and $n-1$. but then p divides $(n+1)-(n-1)=2$. So $p=2$. furthermore, in this case, $n+1$ and $n-1$ are powers of 2 which differ by 2 . This clearly forces $n-1=2$ and $n+1=4$, so $n=3$ and $m=3$.

Obviously $n-1=0$ is forbidden, since p^{m} is positive, so we are left with the case $n-1=1$. Then $n=2, p=3$, and $m=1$.

So there are only two possibilities: $2^{3}+1=3^{2}$, and $3^{1}+1=2^{2}$.
(b) Fix the prime power p^{m} with $p \geq 5$ and $m \geq 1$. The rational points of order dividing 2 on $y^{2}=x^{3}+p^{m} x$ are precisely \mathcal{O} and the points $(x, 0)$, where x is a rational root of $x^{3}+p^{m} x$. Since $x^{2}+p^{m}$ has complex roots, \mathcal{O} and $(0,0)$ are the only rational points of order dividing 2 .

Now let $(x, y) \in C(\mathbb{Q})$ be a point of finite order bigger than 2 . By problem $2(b)$ above, we know that $x \mid p^{m}$, and so $x=p^{e}$ is a prime power for some $0 \leq e \leq m$. Also, we know that $x+\left(p^{m} / x\right)=p^{e}+p^{m-e}$ is a perfect square.

Now we have several cases. Suppose that $e<m-e$. Then $p^{e}+p^{m-e}=$ $p^{e}\left(1+p^{m-2 e}\right)$ is a perfect square. Since p does not divide $1+p^{m-2 e}$, this means that e is even, and $\left(1+p^{m-2 e}\right)$ is a perfect square. By part (a), this forces $p=2$ or $p=3$, contradicting the assumption $p \geq 5$ in this part.

Similarly, if $e>m-e$, we get a contradiction for essentially the same reason.
Finally, we have the case $e=m-e$, or $m=2 e$. Then $p^{e}+p^{e}=2 p^{e}$ must be a perfect square. Clearly for this to happen we need to have $p=2$, which again is not allowed by the hypothesis.

We conclude that $\{\mathcal{O},(0,0)\}$ is the entire set of rational points of finite order on this C.
(c) In this part we assume that $p=2$ and $m=6$. We begin as in part (b): The rational points of order dividing two are $\{\mathcal{O},(0,0)\}$, so assume that (x, y) is a rational point of order >2; then $x=2^{e}$ for some $0 \leq e \leq 6$, and $2^{e}+2^{6-e}$ is a perfect square.

Now because m is so small, we could just check all 7 possibilities for e, but let's continue to proceed as in part (b). So if $e<6-e$, then as above e is even and $1+2^{6-2 e}$ is a perfect square. By part (a), $6-2 e=3$ and so there is no such e.

Similarly, if $e>6-e$ we get no solutions.
Finally, we have the case $e=6-e$, and so $e=3$, and $2^{3}+2^{3}=16$ is indeed a perfect square in this case. So we get the candidate point $P=(8,32)$ in this case. We need to check if it really does have finite order. We calculate the slope
of the tangent line to P is $\left(3(8)^{2}+64\right) / 2(32)=4$ and so $x(2 P)=4^{2}-2(8)=0$. Then clearly $2 P=(0,0)$.

So in this case, the group of rational points of finite order on C is

$$
\{\mathcal{O},(0,0), P,-P\}
$$

where $P=(8,32)$. The calculation above makes it clear that this is a cyclic group of order 4.

