18.704 Fall 2004 Homework 2 Solutions

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A cubic in Weierstrass normal form is $C_{0}: y^{2}=x^{3}+a x^{2}+b x+c$, or in homogeneous coordinates, $C: Y^{2} Z=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}$. Prove that C is a nonsingular curve if and only if the polynomial $x^{3}+a x^{2}+b x+c$ has distinct roots. Show also that the point at infinity $[0,1,0]$ is an inflection point on the curve C.

Solution. We will solve this problem using homogeneous coordinates.
(Note: the book does prove on p. 26 that C_{0} has a singular point if and only if $f(x)=x^{3}+a x^{2}+b x+c$ has distinct roots. So another approach is to reproduce that "affine coordinates" proof; then you only need to show that the single point at infinity $[0,1,0]$ is always nonsingular.)

Let $F(X, Y, Z)=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}-Y^{2} Z$, so that C is the vanishing locus in \mathbb{P}^{2} of the polynomial F. Suppose that $[r, s, t]$ is a point on the curve where all three partial derivatives of F vanish. We calculate

$$
\begin{gathered}
\partial F / \partial X=3 X^{2}+2 a X Z+b Z^{2} \\
\partial F / \partial Y=2 Y Z \\
\partial F / \partial Z=a X^{2}+2 b X Z+3 c Z^{2}-Y^{2} .
\end{gathered}
$$

From the second equation we see that either $s=0$ or $t=0$. Suppose that $t=0$; then the first equation gives $r=0$, and finally the third equation gives $s=0$. But $[0,0,0]$ is not a point in \mathbb{P}^{2}, so we can ignore this possibility.

This means that we do not have to worry about the case $t=0$, so since we are working in projective space we can assume that $t=1$ by scaling. We still have to worry about the case $s=0$. In that case, the first equation above says that r is a root of $3 x^{2}+2 a x+b=0$. Since $[r, 0,1]$ also lies on the curve C, r is a root of $x^{3}+a x^{2}+b x+c=0$. Thus r is a root both of the polynomial $p(x)=x^{3}+a x^{2}+b x+c$ and its derivative $p^{\prime}(x)=3 x^{2}+2 a x+b$. Then r is a double root of the polynomial $p(x)$ and $p(x)$ does not have distinct roots.

Conversely, if r is a multiple root of the polynomial $p(x)$ then r is also a root of the polynomial $p^{\prime}(x)$. But then r is also a root of $3 p(x)-x p^{\prime}(x)=$ $a x^{2}+2 b x+3 c$. It follows that in this case $[r, 0,1]$ is a point on C where all three partial derivatives vanish, so C fails to be nonsingular.

To show that $P=[0,1,0]$ is an inflection point on C, we first need to find the tangent to the curve C at P. This is the line $\alpha X+\beta Y+\gamma Z=0$ where $\alpha=\partial F / \partial X(P)=0, \beta=\partial F / \partial Y(P)=0$, and $\gamma=\partial F / \partial Z(P)=-1$. In other words, the line at infinty $Z=0$ is the tangent line to C at the point P. But since P is clearly the only point of intersection of $Z=0$ with C, the point P must be an inflection point.
2. Let C be a nonsingular cubic curve in \mathbb{P}^{2} (not necessarily in Weierstrass form.) Suppose that \mathcal{O} is an inflection point on C. Make the rational points on C into a group using \mathcal{O} as the identity element, as in Section I. 2 of the text.
(a) Prove that a point $P \in C$ satisfies $P+P=\mathcal{O}$ (in other words the order of P in the group divides 2) if and only if the tangent line to C at P goes through \mathcal{O}.
(b) Prove that a point $P \in C$ satisfies $P+P+P=\mathcal{O}$ (i.e. P has order dividing 3 in the group) if and only if P is an inflection point on the curve.

Solution. (a) We have $P+P=(P * P) * \mathcal{O}$. If $P+P=\mathcal{O}$, then there is a line ℓ whose three points of intersection with C are $\mathcal{O}, \mathcal{O}, P * P$. Since ℓ hits \mathcal{O} twice, ℓ must be the tangent line to C at \mathcal{O}. But since \mathcal{O} is a point of inflection, this happens if and only if $P * P=\mathcal{O}$. This says exactly that the tangent line to the curve at P goes through \mathcal{O}. The converse is similar.
(b) Recall the way we constructed additive inverses to show that the points on C are a group: first find $\mathcal{O} * \mathcal{O}$; In our case this is \mathcal{O} again. Then given any point P on C, we have $-P=P * \mathcal{O}$.

Now suppose that $P+P+P=(P+P)+P=\mathcal{O}$. Then $P * \mathcal{O}=-P=P+P$. Write $Q=P * P$. Then $P * \mathcal{O}=P+P=\mathcal{O} * Q$; this means the line through P and \mathcal{O} and the line through Q and \mathcal{O} have identical third points of intersection, which forces $P=Q$. Finally, we have shown $P * P=P$ which means that P is an inflection point.

The converse follows by reversing these steps.
3. This problem concerns the affine curve $C_{0}: x^{3}+y^{3}=\alpha$ for some nonzero constant α. In homogeneous coordinates, this is $C: X^{3}+Y^{3}=\alpha Z^{3}$. In particular, $[1,-1,0]$ is a point at infinity on the curve. In fact C is a nonsingular curve and $[1,-1,0]$ is an inflection point (you don't have to prove this.) Define a group law on C by taking $\mathcal{O}=[1,-1,0]$ as the identity.
(a) Given a point $P=\left(x_{0}, y_{0}\right) \in C_{0}$, find the tangent line to C at P.
(b) Let $P=\left(x_{0}, y_{0}\right)$ be a rational point on C_{0}. Find the coordinates of the additive inverse Q of P, that is, the point Q such that $P+Q=\mathcal{O}$.
(c) Find all of the complex points P on C such that $P+P=\mathcal{O}$. There are four. How many of these points are rational points? (The answer depends on α.)
(d) Let $\alpha=9$. Then $(1,2) \in C_{0}$. Calculate $(1,2)+(1,2)$. (You don't need to use section I.4. The formulas there are not applicable because they assume the curve is in Weierstrass form.)
(e) ${ }^{*}$ Let $\alpha=1000$. find all of the rational points on C in this case (feel free to quote known theorems without proof.) What kind of group do we get for the set of all rational points on C ?

Solution. (a) Using implicit differentiation, we have

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}=0, \text { so that } \frac{d y}{d x}=-\frac{x^{2}}{y^{2}} .
$$

Then the tangent line to C_{0} at $\left(x_{0}, y_{0}\right)$ is

$$
y-y_{0}=-\left(\frac{x_{0}^{2}}{y_{0}^{2}}\right)\left(x-x_{0}\right) .
$$

(b) Since \mathcal{O} is an inflection point, as we saw in problem 2 above we have $-P=P * \mathcal{O}$. Since \mathcal{O} is the point at infinity coresponding to the direction $(1,-1)$, the line through P and \mathcal{O} is the unique line ℓ through P with slope -1 , i.e. the line $\left(y-y_{0}\right)=-\left(x-x_{0}\right)$. But since the curve C_{0} is symmetric about the line $y=x$, it follows that ℓ hits C_{0} in the third point $\left(y_{0}, x_{0}\right)$. (If this geometric argument bothers you, one can also see this algebraically.) So $-P=\left(y_{0}, x_{0}\right)$.
(c) From problem 2 above, we are looking for all points P such that $P * P=$ \mathcal{O}. We know that \mathcal{O} itself is one such point, so assume now that $P \neq \mathcal{O}$. Then $P=\left(x_{0}, y_{0}\right)$ is on the affine part of the curve C_{0}. We calculated the tangent line to the curve at P above in part (a). This line will contain the point \mathcal{O} if and only if it has slope -1 , i.e. if and only if $x_{0}^{2}=y_{0}^{2}$, or $x_{0}= \pm y_{0}$. Note that we can't have $x_{0}=-y_{0}$, for then since $\left(x_{0}, y_{0}\right) \in C$, we would have $\alpha=0$, which we excluded.

So any point of order dividing 2 on the curve has the form $\left(x_{0}, x_{0}\right)$. Then $x_{0}^{3}=\alpha / 2$. If we define $\gamma=\sqrt[3]{\alpha / 2}$, then the solutions to this equation are

$$
x_{0}=\gamma, \gamma \delta, \gamma \delta^{2}
$$

where $\delta=-1 / 2+\sqrt{3} i / 2$ is a third root of 1 . Thus we have found all of the points of order 2 on the curve:

$$
\mathcal{O}=[1,-1,0], \quad(\gamma, \gamma), \quad(\gamma \delta, \gamma \delta), \quad\left(\gamma \delta^{2}, \gamma \delta^{2}\right) .
$$

\mathcal{O} is definitely a rational point on the curve (its homogeneous coordinates are certainly rational.) Since γ is real, $\gamma \delta$ and $\gamma \delta^{2}$ cannot be real numbers, so they are certainly not rational. Thus the only other point that is potentially rational
is (γ, γ), which is rational if and only if α happens to be twice the cube of a rational number.

To summarize: if α is twice the cube of a rational number, then C has two rational points of order dividing 2 , namely (γ, γ) and \mathcal{O}; on the other hand, if α is not twice the cube of a rational number, then \mathcal{O} is the only rational point on C of order dividing 2 .
(d) Now let $\alpha=9$. The tangent line at the point $(1,2)$ is

$$
(y-2)=(-1 / 4)(x-1)
$$

by part (a). To find its third intersection point with C, we substitute $y=$ $(-1 / 4) x+9 / 4$ into the equation for C, getting

$$
\begin{gathered}
x^{3}+((-1 / 4) x+9 / 4)^{3}=9, \\
63 / 64 x^{3}+27 / 64 x^{2}+a_{1} x+a_{2}=0, \\
x^{3}+3 / 7 x^{2}+b_{1} x+b_{2}=0,
\end{gathered}
$$

where here $a_{1}, a_{2}, b_{1}, b_{2}$ are some constants we won't care about. Then the sum of the three roots of the cubic is $(-3 / 7)$, and so since the root $x=1$ has multiplicity two we must have the third root is $x_{3}=-3 / 7-1-1=-17 / 7$. Then the corresponding y-coordinate is $y_{3}=(-1 / 4)(-17 / 7)+9 / 4=20 / 7$. Thus $P * P=(-17 / 7,20 / 7)$. Then $P+P=(P * P) * \mathcal{O}$, which as we saw in part (b) is equal to

$$
P+P=(20 / 7,-17 / 7) .
$$

(e) Since $\alpha=1000$, we are looking for rational solutions to $x^{3}+y^{3}=10^{3}$. If we write $x=X / Z, y=Y / Z$ for some integers X, Y, Z, then $X^{3}+Y^{3}=(10 Z)^{3}$. Now if we quote Fermat's last theorem for the case of the exponent 3 (that case has been known for many years), then it says that the only solutions to this equation are the ones where one of X, Y, Z is 0 . Since Z can't be zero, we see that the only possible solutions are $X=0, Y=10 Z$, or $X=10 Z, Y=0$. In affine coordinates these are the two trivial solutions $(x, y)=(0,10),(10,0)$. But we need to also include the point at infinity $[1,-1,0]$, which is always a rational point on the curve C (regardless of α.) So the group of rational points on C consists of precisely 3 elements. There is only one such group up to isomorphism, namely the cylic group of order 3 .

