18.704 Fall 2004 Homework 2

All references are to the textbook "Rational Points on Elliptic Curves" by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A cubic in Weierstrass normal form is $C_{0}: y^{2}=x^{3}+a x^{2}+b x+c$, or in homogeneous coordinates, $C: Y^{2} Z=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}$. Prove that C is a nonsingular curve if and only if the polynomial $x^{3}+a x^{2}+b x+c$ has distinct roots. Show also that the point at infinity $[0,1,0]$ is an inflection point on the curve C.
2. Let C be a nonsingular cubic curve in \mathbb{P}^{2} (not necessarily in Weierstrass form.) Suppose that \mathcal{O} is an inflection point on C. Make the rational points on C into a group using \mathcal{O} as the identity element, as in Section I. 2 of the text.
(a) Prove that a point $P \in C$ satisfies $P+P=\mathcal{O}$ (in other words the order of P in the group divides 2) if and only if the tangent line to C at P goes through \mathcal{O}.
(b) Prove that a point $P \in C$ satisfies $P+P+P=\mathcal{O}$ (i.e. P has order dividing 3 in the group) if and only if P is an inflection point on the curve.
3. This problem concerns the affine curve $C_{0}: x^{3}+y^{3}=\alpha$ for some nonzero constant α. In homogeneous coordinates, this is $C: X^{3}+Y^{3}=\alpha Z^{3}$. In particular, $[1,-1,0]$ is a point at infinity on the curve. In fact C is a nonsingular curve and $[1,-1,0]$ is an inflection point (you don't have to prove this.) Define a group law on C by taking $\mathcal{O}=[1,-1,0]$ as the identity.
(a) Given a point $P=\left(x_{0}, y_{0}\right) \in C_{0}$, find the tangent line to C at P.
(b) Let $P=\left(x_{0}, y_{0}\right)$ be a rational point on C_{0}. Find the coordinates of the additive inverse Q of P, that is, the point Q such that $P+Q=\mathcal{O}$.
(c) Find all of the complex points P on C such that $P+P=\mathcal{O}$. There are four. How many of these points are rational points? (The answer depends on α.)
(d) Let $\alpha=9$. Then $(1,2) \in C_{0}$. Calculate $(1,2)+(1,2)$. (You don't need to use section I.4. The formulas there are not applicable because they assume the curve is in Weierstrass form.)
(e) ${ }^{*}$ Let $\alpha=1000$. find all of the rational points on C in this case (feel free to quote known theorems without proof.) What kind of group do we get for the set of all rational points on C ?
