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18.704 Fall 2004 Homework 10 

Due 12/03/04 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. Let � > 0 be an irrational real number. 

(a) For each integer n → 0, define �(n) = n� − [n�], where [c] means the 
greatest integer less than or equal to c. Show that the set of real numbers 
{�(n)|n ≤ Z, n → 0} is dense in the real interval (0, 1). In other words, given 
any real number 0 < a < 1 and κ > 0, show that there exists some n such that 
|a − �(n)| < κ. 

(b) Using part (a), show that given any constant C > 0, there exist infinitely 
many distinct rational numbers p/q such that 

� p � C 
� − �� � . 
q q 

Solution. (a) Set S = {�(n)|n → 0} and note that S � [0, 1]. Since [0, 1] is 
compact, we can find a subsequence n1 < n2 < n3 < . . . of 1, 2, 3, . . . such that 
the sequence �(ni) converges as i � ⊂ to some point d ≤ [0, 1]. In particular, 
given 1 > κ > 0 we can certainly find integers r > s > 0 such that |�(s)−d| � κ/2 
and |�(r) − d| � κ/2; then 

|�(r) − �(s)| � |�(s) − d| + |�(r) − d| < κ. 

We claim that |�(r) − �(s)| = �(r − s). This is because |�(r) − �(s)| and 
�(r − s) are both in the interval (0, 1) (since � is irrational) and 

|�(r) − �(s)| − �(r − s) ≤ Z. 

Setting p = r − s, we have �(p) < κ. Let m be the largest integer such that 
mp < 1. Then by a similar argument as above, we have �(ip) = i�(p) for all 
1 � i � m. So the sequence of points 

�(p), �(2p) = 2�(p), . . . , �(mp) = m�(p) 
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gives a sequence of points in S such that every point in [0, 1] lies at a distance 
of at most �(p) < κ from one of them. Since κ was arbitrary, it follows that S is 
dense in [0, 1]. 

(b) By part (a), for each integer n > 0 we can find rn > 0 such that 0 < 
�(rn) < 1/n. Then putting qn = rn and pn = [rn�], we have |pn − qn�| < 1/n. 
Then dividing by qn, we get 

� pn � 1 
� − �� < . 
qn nqn 

In particular, we get a sequence of rational numbers pn/qn, and given any 
C > 0 it is clear that 

� � 
� pn � C 
� − �� < 
qn qn 

will hold for all n sufficiently large, in particular for infinitely many n. Also, 
there are infinitely many distinct rational numbers among the pn/qn, since the 

� pn � 
differences � − �� go to zero as n increases. 

qn 

2. Let � ≤ R be any real number. In this exercise we will consider solutions 
to the inequality 

� p � 1 
� − �� � . (0.1) 
� q � q3 

We will eventually prove in Section V of the book that there are finitely 
many rational numbers p/q satisfying (0.1), at least when � is the irrational 
cube root of an integer. The point of this exercise is to show that in any case, 
in any list of solutions to an equation (0.1) the denominators must grow very 
rapidly, so the solutions are quite sparse. 

Now do Exercise 5.8 parts (a) and (b) from the text. 

Solution. (a) Consider distinct rationals p/q and p�/q� such that q > q and 
satisfying 

� p � 1 � p� � 1 
� − �� � and� − � . 
� q � q3 � q� � (q�)3 

Then by the triangle inequality, we see that 

� p p � 1 1 2 
� −
� q q� � q3 (q�)3 q3 

Multiplying by qq�, we have 

2q� 
|pq � − qp | � . 

q2 
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Now since we assume that p/q and p�/q� are distinct rationals, we have that 

pq� − qp is a nonzero integer, so |pq� − qp�| → 1. So
2q� 

→ 1 and thus q � → 
q2 

q2 2 
as required. 

(b) Now if p0/q0, . . . pr /qr all satisfy the inequality, with 4 � q0 � q1 � 
· · · � qr , then the trick is to prove that actually qr → 22

r 
+1, which is an even 

better estimate than the estimate qr → 22
r 

which we want, but is more natural 
to prove by induction. 

The base case is q0 → 4 = 22 . For the induction step, we assume the estimate 
holds for r and then using part (a) we get 

2q
→ 22

r+1 
r +2 +1 qr+1 → /2 = 22

r+1 

. 
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3. For this exercise, we will look at the curves Cd : y2 = x3 + d, where d ≤ Z. 
Let Cd(Z) denote the set of integer points on the curve. 

(a) Show that for some choice of d → 1 the group Cd(Q) contains a point of 
infinite order (i.e. has rank → 1.) 

(b) Do Exercise 5.6(b) from the text. This proves that curves of the form 
Cd can contain arbitrarily large numbers of integer points. 

Solution. (a). It is not hard to cook up an example by picking some small 
d. For example, taking d = 3, we have the point P = (1, 2) on C : y2 = x3 + 3. 
One calculates that 2P = (−23/16,−11/64). Since this point does not have 
integer coefficients, the point P has infinite order by the Nagell-Lutz Theorem. 

3(b). Take some integer point P of infinite order on C : y2 = x + d for some 
d (by part (a) we know that some such exists). Then consider the points 2nP = 
(pn/qn, rn/sn) for n → 0, where the pn/qn and rn/sn are rational numbers 
written in lowest terms. Note that if (x0, y0) is a point in C(Q), then if e ≤ Z 
clears the denominators of x0 and y0, i.e. ex0, ey0 ≤ Z, then (e2x0, e

3y0) is an 
integer point on C � : y2 = x3 + e6d. 

So considering the first n + 1 points in the sequence P, 2P, 4P, . . . , we have 
that en = lcm(q1, q2, . . . , qn, s1, . . . , sn) clears all of the denominators of these 
points. Then we have at least n + 1 integer points on the curve y2 = x3 + e6 d,

n 
namely the points 

2 3 �� 
enpi enri � 

, �0 � i � n . 
qi si 

To estimate the size of the constant e6 d, we use a lemma from Chapter III n

of the text (recall the height notation from that chapter.) In particular we know 
that there is a constant � > 0 such that h(2P ) � 4h(P ) + �. By induction one 
can use this to get the estimate h(2iP ) � 4i(h(P ) + �) for all i → 0. 
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In fact, we know from earlier results that the same primes divide sn as qn, 
in fact that q2 = s3 . So q2 � H(2nP ) by the definition of the height of a point n n n 
(remember this is the height of the x-coordinate), and then 2 log qn = 3 log sn � 
h(2nP ) for each n. 

Now 

en = lcm(q1, q2, . . . , qn, s1, . . . , sn) = lcm(q1, . . . , qn) � q1q2 . . . qn 

and so 
n 

log (en)6d = log d + 6 log en � N + h(2iP )/2 
i=1 

for some constant N . So 

n 

log (en)6d � N + 4iM � N + 4n+1M 
i=1 

for some constant M . Then log(log(en)6d) � K + (n+ 1)L for constants K and 
L, and all n. 

Finally, if we set dn = (en)6d for each n, then we see that the curve Cd has 
n 

at least n+ 1 points by construction. Note that we can choose a constant J > 0 
such that (n + 1) → J(K + (n + 1)L) for all n → 0. So 

#Cd (Z) → n + 1 → J log log dnn 

for all n → 0, which proves the estimate we wanted. 
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