
22. A quick primality test 

Prime numbers are one of the most basic objects in mathematics 
and one of the most basic questions is to decide which numbers are 
prime (a clearly related problem is to find the prime factorisation of a 
number). Given a number n one would like a quick way to decide if n 
is prime, say using a computer. Quick can be given a precise meaning. 
First one measures the complexity by the number of digits, or what 
comes to the same thing d = ,log nl (we will work base 2, so that this 
is the same as the number of bits). The larger d the longer it will take 
to decide if n is prime, in general. We would like an algorithm that 
runs in polynomial time, that is, the algorithm is guaranteed to be 
over in a time given by a function that is polynomial in d; in essence 
we are looking for an upper bound for the running time of the form 
c · dm, where c is some constant and m is an integer. 
This very famous problem was solved in 2002 by Manindra Agrawal, 

Neeraj Kayal and Nitin Saxena, the last two of whom were graduate 
students, in computer science from India 

The basis of their algorithm is the following simple idea. If n is a 
prime number then 

a n = a mod n, 

for every integer 1 ≤ a ≤ n − 1. This at least gives a way to test if a 
number is not prime. 

Definition 22.1. A natural number n is called a Carmichael num
ber if 

a n = a mod n, 

for every integer 1 ≤ a ≤ n − 1 and yet n is not prime. 

Unfortunately Carmichael numbers exist; the first such number is 
561 = 3 · 11 · 17. To remedy this, the next idea is that one can test 
primeness if one works with polynomials, that is, if one works in Zn[x] 
and not just Zn. 

Lemma 22.2. Let n ∈ N be a natural number, n ≥ 2. 
Assume that a and n are coprime. Then n is prime if and only if 

(x + a)n = x n + a ∈ Zn[x]. 

Proof. If n is prime then the map 

φ : Zn[x] −→ Zn[x] given by φ(f) = fn , 

is a ring homomorphism. In particular 
n n n(x + a)n = φ(x + a) = φ(x) + φ(a) = x + a = x + a ∈ Zn[x]. 

1 

MIT OCW: 18.703 Modern Algebra Prof. James McKernan



Now suppose that n is composite. Pick a prime p that divides m and 
k psuppose that n = p m, where m is coprime to n. The coefficient of x

is   
n n−pc = a . 
p   

Now p does not divide an−p and pk does not divide n
p
, so that pk does 

not divide c. Therefore the coefficient of xp in 

(x + a)n − x n − a 

is not zero in Zn. D 

So now we have a way to test if n is prime. Pick an integer 1 < a < n. 
If a and n are not coprime then n is composite. Otherwise compute 

(x + a)n − x n − a ∈ Zn[x]. 

The problem is that this takes way too long. There are n coefficients 
to compute, and n is exponential in d, not polynomial. 

To remedy this, pick a small (for example, something that is poly
nomial in d) natural number r. Let 

I = (x r − 1, n) < Z[x], 

the ideal generated by xr − 1 and n inside the ring Z[x] and let 

Z[x] Zn[x]
R = = ,

I (xr − 1)
the quotient ring. Computations in R proceed much faster than in 
Zn[x], since we only need to compute r coefficients and not n. Obvi
ously if n is a prime number then 

(x + a)n = x n + a ∈ R, 

The problem is that even if n is composite, there might be a handful 
of a and r such that 

(x + a)n = x n + a ∈ R. 

The trick is to find bounds on a and r which only depend on d. 
Recall that ϕ(r) denotes the cardinality of Ur, that is, the number 

of integers between 1 and r − 1 coprime to r. We will use the notation 
g(d) ∼ O(f(d)) if there is a constant c such that 

g(d) ≤ c · f(d) 
for all d ∈ N. 

In terms of running time, note that it takes O(d) time to add, mul
tiply or divide two numbers with d digits (aka bits); more generally 
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it takes O(d · m) time to add, multiply or divide two polynomials of 
degree m with coefficients with at most d digits. 

We will need a simple result in number theory whose proof we omit: 

Lemma 22.3. The product of all prime numbers r between N and 2N 
is greater than 2N for all N ≥ 1. 

Here is the algorithm: 

Algorithm 1 Algorithm for primality testing
 

Require: integer n > 1 
1:	 if n = ab for a ∈ N and b > 1 then n is composite. 
2:	 Find the smallest integer r such that the order of n in Zr is greater 

than d2 . 
3:	 if the gcd of a and n lies between 1 and n, for some 1 ≤ a ≤ r 

then n is composite. 
4:	 if n ≤ r then n is prime.n 
5:	 for a = 1 to l ϕ(r)dJ do 
6: if (x + a)n = xn + a ∈ R then n is composite. 

7:	 n is prime. 

By (22.7) r ≤ d5 so that step 4 is relevant only if n ≤ 5, 690, 034. 
Let us check that this algorithm works. There are two issues. How 

long will it take this algorithm to run and why does it give the right 
answer? 

Theorem 22.4. Algorithm (1) takes no longer than O(d21/2) to run. 

Theorem 22.5. Algorithm (1) returns composite if n is composite and 
algorithm (1) returns prime if n is prime. 

Half of (22.5) is easy: 

Lemma 22.6. If n is prime then algorithm (1) returns prime. 

Proof. If n is prime then the conditions in steps (1), (3) and (5) will 
never be satisfied; so eventually steps (4) or (6) will tell us n is prime. 

D 

To prove (22.5) it remains to show that if the algorithm returns prime 
then in fact n is prime. If the condition in step 4 is satisfied then it is 
clear that n is prime, since if we got to step 4 then every integer a less 
than n is coprime to n. 

So to check (22.5) we may assume that we get to step 6. We will 
need a result about the size of r for both results: 
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Lemma 22.7. There is a prime d5 ≤ r ≤ 2d5 for which the order of n 
in Ur is greater than d2 . 

Proof. Suppose not. Then the order of n in Ur is always at most d2 , 
for every prime r between N = d5 and 2N . In particular the order of 
n in Ur is i, for some 1 ≤ i ≤ d2, so that r divides ni − 1. Therefore 
the product of the primes r between N and 2N divides the product of 
ni − 1 between 1 and d2 .  

2N ≤ r 
N≤r≤2N  

≤ (n i − 1) 
1≤i≤d2 

1 d2(d2+1)< n 2 

≤ 2N , 

a contradiction. D 

Note a useful trick to compute powers quickly. Suppose we want 
to compute 316 . First we compute 32 = 3 · 3. Then we compute 
34 = 32 · 32, then 38 = 34 · 34 and then 316 = 38 · 38 . This involves 
four multiplications, rather than 15. To compute an, write down n in 
binary, 

n = ad2
d + ad−12

d−1 + · · · + a0. 

Now compute the powers a2
i 
, 1 ≤ i ≤ d and take the product over 

those i such that ai = 1. For example, consider computing 513 , 

13 = 23 + 22 + 1 so that we compute 513 = 58 · 54 · 5. 

Proof of (22.4). In the first step the number of digits of a is no more 
than d/b. Given a and b it takes no more than d2 computations to 
calculate ab . So the first step takes at most O(d3) time to run. 
In the second step we need to find an integer r so that the order of 

n in Ur is at least d2 . Given r we just need to compute ni modulo r 
for every i ≤ d2 . This will take at most O(d2 · log r) computations. By 
(22.7) we need only check O(d5) different values for r. So step 2 takes 
no longer than O(d7). 
The third step involves computing the gcd of two numbers; each gcd 

takes only time O(d). The third step takes O(d6). Step 4 takes time 
O(d). n 

Step 5 involves ϕ(r)d iterations. Each iteration in step 6 involves 
checking an equation involving polynomials of degree r with coefficients 
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of size d, where we multiply d polynomials; each equation therefore 
takes O(rd2) time to check. Step 5 then takes n 

O(r ϕ(r)d3) = O(r 3/2d3) = O(d21/2). 

It is clear that step 5 dominates all other steps and so this is the time 
it takes for the algorithm to run. D 

It is interesting to observe that in practice Algorithm (1) isn’t the 
right way to check if n is prime. There is a probabilistic algorithm 
which runs much faster. 

We will need the following useful way to characterise prime numbers: 

Lemma 22.8. Let n ∈ N be an odd natural number n ≥ 3. 
Then n is prime if and only if 1 has precisely two square roots in 

the ring R = Zn. Moreover if n is composite we can find at least four 
square roots, all of which are coprime to n. 

Proof. Note that square roots of 1 correspond to roots of the polynomial 
x2 − 1 ∈ R[x]. Note also that ±1 (which are distinct, as n > 2) are two 
roots of x2 − 1. 

Suppose that n is prime. Then Fn = Zn is a field and the quadratic 
polynomial x2 − 1 has at most two roots. Therefore it has exactly two 
roots. 

Now suppose that n is composite. Then n = kl where k and l are 
coprime, not equal to one. By the Chinese remainder theorem, 

Zn = Zkl r Zk ⊕ Zl. 

But then (±1, ±1) are at least four different roots of x2 − 1. D 

So here is the probabilistic algorithm. Suppose we are given an odd 
natural number n > 2. Pick an integer 1 ≤ a ≤ n at random. If a and 
n aren’t coprime then n is composite; we can check this very quickly. 

Otherwise compute 

a n−1 mod n − 1. 

It this is not 1 then n is not prime by Fermat. As n is odd, 

n − 1 
m = 

2 
is an integer. Let 

b = a m ∈ R. 

We can compute b quickly. Also 

b2 2m = a = a n−1 = 1 ∈ R, 
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so that b is a square root of 1. If b = ±1 then n is composite. If m is 
even and b = 1 then let 

m 
l = ,

2 
and compute 

c = a l ∈ R. 

Then c2 = b = 1 so that if c = pm1 then n is composite. 
We can keep going until what remains is odd. If at any stage we find 

a square root of 1 which is not ±1 then we call a a witness. 
It is not hard to see that at least half of the numbers 1 ≤ a ≤ n 

coprime to n are witnesses. So if we pick a hundred numbers a at 
random and none of them are witnesses then n is prime with probability 

1 
. 

2100 

Since it is now more likely that the sun will explode in five minutes 
(in which case we won’t care if n is prime) or more practically that 
the computer will make an error, than n is composite, we can safely 
assume that n is prime. 

Of course this probabilistic algorithm is a little unsatisfying. The 
AKS test runs slower but at least we know that n is prime. However 
note that if we find a witness then we know that n is not prime. One can 
adapt the AKS test to give a fast probabilistic algorithm to show that 
if n is prime then the algorithm will tell us n is prime with probability 
1/2 (let’s say). So now keep alternating between the two probabilistic 
algorithms. With vanishingly small probability, one algorithm will tell 
us that n is either prime or composite. 

It is perhaps instructive to consider how both algorithms work in 
a concrete example. In terms of cryptography the most interesting 
examples are when n is a product of two different primes. Let’s take 
p = 19 and q = 53. Then n = 1007. We check if n is prime. 

First the probabilistic algorithm. We pick a random integer 1 ≤ a ≤ 
n. Let’s take the random integer a = 2. Now 

1007 = 29 + 28 + 27 + 26 + 25 + 23 + 22 + 2 + 1 

(google is your friend for this). In particular d = 9. Now 

22 = 2 · 2 = 4, 22
2 
= 16, 22

3 
= 256, 22

4 
= 81, 

22
5 
= 519, 22

6 
= 492, 22

7 
= 384, 22

8 
= 434, 22

9 
= 47. 

Thus 

2503 = 2 ∗ 4 ∗ 16 ∗ 81 ∗ 519 ∗ 492 ∗ 384 ∗ 434 ∗ 47 = 493, 
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which is not 1. Thus n is composite. If 2 didn’t work, then we would 
try 3, etc. 

In the case of the first Carmichael number, 561, one can check that 

2230 = 166, 

so that 2 is a witness. 
For the AKS-test, we first test that n is not a pure power. The 

square root of 1007 is less than 32. It is easy to see that n is not a 
square. The cube of 10 is 1000, and so it is easy to see that n is not a 
cube. If n is a fourth power it is a square. The fifth root of 1007 is less 
than 5; 45 = 1024 = n. The seventh root of n is less than 3, so that n 
is not a pure power. 

Next we find a prime r such that the order of n in Ur is at least d2 . 
83 is a prime bigger than 81 = 92 . If the order of n = 1007 in U83, the 
non-zero elements of the field F83, is not 82 = 2 ∗ 41, it must be either 
2 or 41. 1007 = 11, modulo 83. 

10072 = 38 

so that the order of 1007 is not 2 in U83. But it is 41. Let’s try 89. 
89 − 1 = 88 = 8 · 11. 1007 modulo 89 is 28. 

288 = 39 and 2811 = 37, 

so that 1007 has order 88 > 81 in U89, the non-zero elements of the 
field F89. As r is prime, φ(r) = r − 1, so that φ(89) = 88. Next we 
check that n is coprime to every number less than 88. It isn’t so we 
are done. 

If we ignore this and assume we get to the next step, we are supposed 
to compute 

Z1007[x]
(x + a)n − x n − a ∈ ,

(x89 − 1)
√ 

for every 1 ≤ a ≤ l 889J = 84. Exercise for the reader. 
Let us now turn to the proof of (22.5). By (22.6) we may assume 

that r is prime. We want to prove: 

Proposition 22.9. Let n > 1 be an odd natural number which is not a 
pure power such that n has no prime factors less than a prime number 
r, the order of n in Fr is at least d2, where d = ,log nl and 

(x + a)n = x n + a ∈ R 
√ 

for every integer 1 ≤ a ≤ rn = A, where R is the ring 

Z[x]
R = . 

(n, xr − 1)
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Then n is prime. 

We will assume that n is composite and derive a contradiction. Sup
pose that p is a prime dividing n. Then we have 

(x + a)n = x n + a, 

in the smaller ring 
Z[x] Fp[x] 

= . 
(p, xr − 1) (xr − 1) 

Now Fp[x] is a UFD. So the polynomial xr − 1 factors into irreducible 
polynomials which are prime. Let h(x) ∈ Fp[x] be a prime polynomial 
dividing xr − 1. Then 

Z[x] Fp[x]F = = ,
(p, h(x)) (h(x))

is an integral domain, since the ideal (h(x)) is prime. On the other 
hand, it is easy to see that F has finitely many elements, so that F is 
a finite field. 

Definition 22.10. Let G be a group. The exponent of G is the least 
common multiple of the orders of the elements of G. 

Lemma 22.11. Let G be a finite abelian group of order n. 
Then the exponent m of G is smallest value of r such that gr = e. 

In particular m = n iff G is cyclic. 

Proof. By the classification of finitely generated abelian groups, we may 
find integers m1,m2, . . . ,mk such that 

G r Zm1 × Zm2 × . . . Zmk , 

where mi divides mi+1. In this case it is clear that m = mk. D 

Lemma 22.12. Let G be a finite subgroup of the multiplicative group 
of a field F . 

Then G is cyclic. 

Proof. Let m be the exponent of G and let n be the order of G. Now 
G is abelian as F is a field. Thus m ≤ n and for every element α of G, 
αm = 1, so that every element of G is a root of the polynomial 

x m − 1 ∈ F [x]. 

But a polynomial of degree m has at most m roots, and so n ≤ m. But 
then m = n and G is cyclic. D 
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Thus F∗ is a cyclic group. Let G be the subgroup of F∗ generated 
by x, x + 1, x + 2, . . . , x + A. The trick is to give lower and upper 
bounds for the size of G; it is then a relatively easy matter to check 
these bounds are incompatible. 

Note that G has lots of generators and relatively few relations; this 
is because the order of n ∈ Ur is relatively large. It is therefore not too 
hard to give lower bounds for the size of G. 

To give upper bounds on the size of G is more complicated; the idea 
is to generate lots of identities, deduced from knowing that (x + a)n = 
xn + a ∈ F. 
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