
19. Special Domains 

Let R be an integral domain. Recall that an element a  = 0, of R is 
said to be prime, if the corresponding principal ideal (p) is prime and 
a is not a unit. 

Definition 19.1. Let a and b be two elements of an integral domain. 
We say that a divides b and write a|b if there is an element q such 
that b = qa. We say that a and b are associates if a divides b and b 
divides a. 

Example 19.2. Let R = Z. Then 2|6. Indeed 6 = 3 · 2. Moreover 3 
and −3 are associates. 

Let R be an integral domain. Note some obvious facts. Every ele
ment a of R divides 0. Indeed 0 = 0 · a. On the other hand, 0 only 
divides 0. Indeed if a = q · 0, then a = 0 (obvious!). Finally every unit 
u divides any other element a. Indeed if v ∈ R is the inverse of u, so 
that uv = 1 then a = a · 1 = (av)u. 

Lemma 19.3. Let R be an integral domain and let p ∈ R. 
Then p is prime if and only if p is not a unit and whenever p divides 

ab then either p divides a or p divides b, where a and b are elements of 
R. 

Proof. Suppose that p is prime and p divides ab. Let I = (p). Then 
ab ∈ I. As p is prime, then I is prime by definition. Thus either a ∈ I 
or b ∈ I. But then either p|a or p|b. Thus if p is prime and p|ab then 
either p|a or p|b. The reverse implication is just as easy. D 

Lemma 19.4. Let R be an integral domain and let a and b be two 
non-zero elements of R. 

TFAE 
(1) a and b are associates. 
(2) a = ub for some unit u. 
(3) (a) = (b). 

Proof. Suppose that a and b are associates. As a divides b, b = qa and 
b divides a, a = rb for some q and r in R. Thus 

b = qa 

= (qr)b. 

As R is an integral domain, and b  = 0, we can cancel b, to get qr = 1. 
But then u = q is a unit. Thus (1) implies (2). 
Suppose that a = qb and that c ∈ (a). Then c = ra = (rq)b. Thus 

c ∈ (b) and (a) ⊂ (b). Now suppose that a = ub, where u is a unit. Let 
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v be the inverse of u, so that b = va. By what we have already proved, 
(b) ⊂ (a). Thus (2) implies (3). 

Finally suppose that (a) = (b). As a ∈ (a), it follows that a ∈ (b), so 
that a = rb, for some r ∈ R. Thus b divides a. By symmetry a divides 
b and so a and b are associates. Thus (3) implies (1). D 

Definition 19.5. Let R be an integral domain. 
We say that R is a unique factorisation domain (abbreviated to 

UFD) if every non-zero element a of R, which is not a unit, has a 
factorisation into a product of primes, 

p1p2p3 · · · pk, 
which is unique up to order and associates. 

The last statement is equivalent to saying that if we can find two 
factorisations of a, 

p1p2p3 · · · pk = q1q2q3 · · · ql. 
where pi and qj are prime, then k = l, and up to re-ordering of 
q1, q2, . . . , ql, pi and qi are associates. 

Example 19.6. Of course, by the Fundamental Theorem of Arith
metic, Z is a UFD. In this case the prime elements of Z are the ordi
nary primes and their inverses. For example, suppose we look at the 
prime factorisation of 120. One possibility, the standard one, is 

23 · 3 · 5. 
However another possibility is 

−5 · 3 · (−2)3 . 

The point is that in an arbitrary ring there is no standard choice of as
sociate. On the other hand, every non-zero integer has two associates, 
and it is customary to favour the positive one. 

Consider the problem of starting with a ring R and proving that R is 
a UFD. Obviously this consists of two steps. The first is to start with 
an element a of R and express it as a product of primes. We call this 
existence. The next step is to prove that this factorisation is unique. 
We call this uniqueness. 

Let us consider the first step, that is, existence of a factorisation. 
How do we write any integer as a product of primes? Well there is 
an obvious way to proceed. Try to factorise the integer. If you can, 
then work with both factors and if you cannot then you already have 
a prime. 

Unfortunately this approach hides one nasty subtelty. 
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Definition 19.7. Let R be a ring and let a ∈ R be an element of R. 
We say that a is irreducible if whenever a = bc, then either b or c is 
a unit. 

Equivalently, a is irreducible if and only if whenever b divides a, 
then b is either a unit or an associate of a. Clearly every prime element 
a of an integral domain R is automatically irreducible. The subtelty 
that arises is that in an arbitrary integral domain there are irreducible 
elements that are not prime. On the other hand, unless the ring is 
very pathological indeed, it is quite easy to prove that every non-zero 
element of a ring is a product of irreducibles, in fact using the method 
outline above. The only issue is that the natural process outlined above 
terminates in a finite number of steps. 

Before we go into this deeper, we need a basic definition, concerning 
partially ordered sets. 

Definition 19.8. Let X be a set. A partial order on X is a reflexive 
and transitive relation on X × X . It is customary to denote a partial 
order ≤. The fact that ≤ is reflexive is equivalent to x ≤ x and the 
fact the ≤ is transitive is equivalent to 

a ≤ b and b ≤ c implies a ≤ c. 

We also require that if x ≤ y and y ≤ x then x = y. 
We say that X satisfies the ascending chain condition (ACC) if every 

infinite increasing chain 

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ · · · 
eventually stabilises, that is, there is an n0 such that xn = xm for every 
n and m at least n0. 

Note that, in the definition of a partial order, we do not require 
that every two elements of X are comparable. In fact if every pair of 
elements are comparable, that is, for every x and y ∈ X, either x ≤ y 
of y ≤ x, then we say that our partial order is a total order. 

There is a similar notion for descending chains, knows as the de
scending chain condition, or DCC for short. 

Example 19.9. Every finite set with a partial order satisfies the ACC 
and the DCC for obvious reasons. 

Let X be a subset of the real numbers with the obvious relation. Then 
X is a partially ordered set. The set 

1 1 1 1 
X = { | n ∈ N } = {1, , , , . . . }, 

n 2 3 4
satisfies the ACC but it clearly does not satisfy the DCC. 
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Let Y be a set and let X be a subset of the power set of Y , so that 
X is a collection of subsets of Y . Define a relation ≤ by the rule, 

A ≤ B if and only if A ⊂ B. 

In the case that X is the whole power set of Y , note that ≤ is not a 
total order, provided that Y has at least two elements a and b, since in 
this case A = {a} and B = {b} are incomparable. 

Factorisation Algorithm: Let R be an integral domain and let a be a 
non-zero element of R that is not a unit. Consider the following algo
rithm, that produces a, possibly infinite, pair of sequences of elements 
a1, a2, . . . and b1, b2, . . . of R, where ai = ai+1bi+1 and neither ai nor 
bi is a unit. Suppose that we have already produced a1, a2, . . . , ak and 
b1, b2, . . . , bk. 

(1) If ak and bk are both irreducible then stop. 
(2) Otherwise, possibly switching	 ak and bk we may assume that 

ak is not irreducible. Thus we may write ak = ak+1bk+1, where 
neither ak+1 nor bk+1 are units. 

Proposition 19.10. Let R be an integral domain. 
TFAE 
(1) The factorisation algorithm above terminates, starting with any 

non-zero element a of the ring R and pursuing all possible ways 
of factorising a. In particular, every non-zero element a of R 
is either a unit or a product of irreducibles. 

(2) The set of principal ideals satisfies the ACC. That is, every 
increasing chain 

(a1) ⊂ (a2) ⊂ (a3) ⊂ · · · ⊂ (an) ⊂ · · · 
eventually stabilises. 

Proof. Suppose we have a strictly increasing sequence of principal ideals 
as in (2). We will find an a such that the factorisation algorithm does 
not terminate. 

Note that a principal ideal (a) = R if and only if a is a unit. As the 
sequence of ideals in (2) is increasing, then no ideal can be the whole of 
R. Thus none of the ai are units. As ai ∈ (ai+1), we may find bi+1 such 
that ai = bi+1ai+1. But bi+1 cannot be a unit as (ai) = (ai+1). Thus 
the factorisation algorithm, with a = a1 does not terminate. Thus (1) 
implies (2). 

The reverse implication follows similarly.	 D 

Lemma 19.11. Let R be a ring and let 

I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ In ⊂ · · · , 
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be an ascending sequence of ideals. 
Then the union I of these ideals, is an ideal. 

Proof. We have to show that I is non-empty and closed under addition 
and multiplication by any element of R. 

I is clearly non-empty. For example it contains I1, which is non-
empty. Suppose that a and b belong to I. Then there are two natural 
numbers m and n such that a ∈ Im and b ∈ In. Let k be the maximum 
of m and n. Then a and b are elements of Ik, as Im and In are subsets 
of Ik. It follows that a + b ∈ Ik, as Ik is an ideal and so a + b ∈ I. 
Similarly −a ∈ I. Finally suppose that a ∈ I and r ∈ R. Then a ∈ In, 
for some n. In this case ra ∈ In ⊂ I. Thus I is an ideal. D 

Definition 19.12. Let R be a integral domain. We say that R is a 
principal ideal domain, abbreviated to PID, if every ideal I in R is 
principal. 

Lemma 19.13. Let R be a principal ideal domain. 
Then every ascending chain of ideals stabilises. In particular every 

non-zero element a of R, which is not a unit, has a factorisation 

p1p2p3 · · · pk, 
into irreducible elements of R. 

Proof. Suppose we have an ascending chain of ideals as in (2) of (19.10). 
Let I be the union of these ideals. By (19.11) I is an ideal of R. As 
R is assumed to be a PID, I is principal, so that I = (b), for some 
b ∈ R. Thus b ∈ (an), for some n. In this case b = qan, for some q. 
But then (b) ⊂ (an). As we have an increasing sequence of ideals, it 
follows that in fact (ak) = (b), for all m ≥ n, that is the sequence of 
ideals stabilises. Now apply (19.10). D 

Thus we have finished the first step of our program. Given an integral 
domain R, we have found sufficient conditions for the factorisation of 
any element a, that is neither zero nor a unit, into irreducible elements. 

Now we turn to the other problem, the question of uniqueness. 

Lemma 19.14. Let R be an integral domain and suppose that p divides 
q, where both p and q are primes. 

Then p and q are associates. 

Proof. By assumption 
q = ap, 

for some a ∈ R. As q is prime, either q divides a or q divides p. If q 
divides p then p and q are associates. 
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Otherwise q divides a. In this case a = qb, and so 

q = ap = (pb)q. 

Cancelling, we have that p is a unit, absurd. D 

Lemma 19.15. Let R be an integral domain and let a and b be two 
non-zero elements of R, both of which are not units. Suppose that 
a = p1, p2, . . . , pk and b = q1, q2, . . . , ql is a factorisation of a and b into 
primes. 

Then a divides b, if and only if k ≤ l and after re-ordering the qj , 
we have that pi and qi are associates, for i ≤ k. 

In particular there is at most one prime factorisation of every non
zero element a of R, up to associates and re-ordering. 

Proof. We prove the first statement. One direction is clear. Otherwise 
suppose a divides b. As p1 divides a and a divides b, p1 divides b. As 
p1 is prime and it divides a product, it most divide one of the factors 
qi. Possibly re-ordering, we may assume that i = 1. By (19.14) p1 

and q1 are associates. Cancelling p1 from both sides and absorbing the 
resulting unit into q2, we are done by induction on k. 

Now suppose that a has two different prime factorisations, 

p1p2 · · · pk and q1q2 · · · ql. 
As a|a, it follows that k ≤ l and that pi and qi are associates. Using 
a|a again, but now the other way around, we get l ≤ k. Thus we have 
uniqueness of prime factorisation. D 

Putting all this together, we have 

Proposition 19.16. Let R be an integral domain, in which every as
cending chain of principal ideals stabilises. 

Then R is a UFD if and only if every irreducible element of R, which 
is neither zero nor a unit, is prime. 

Definition 19.17. Let R be an integral domain. Let a and b be two 
elements of R. We say that d is the greatest common divisor of a 
and b if 

(1) d|a and d|b, 
(2) if d'|a and d'|b then d'|d. 

Note that the gcd is not unique. In fact if d is a gcd, then so is d' if 
and only if d and d' are associates. 

Lemma 19.18. Let R be a UFD. 
Then every pair of elements has a gcd. 
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Proof. Let a and b be a pair of elements of R. If either a or b is zero, 
then it is easy to see that the other element is the gcd. If either element 
is a unit then in fact the gcd is 1 (or in fact any unit). 

So we may assume that neither a nor b are zero or units. Let a = 
p1, p2, . . . , pk and b = q1, q2, . . . , ql be two prime factorisations of a and 
b. Note that we may put both factorisations into a more standard form, 

m1 m2 m3 mk n1 n2 n3 nka = up p p · · · p and vp p p · · · p ,1 2 3 k 1 2 3 k 

where u and v are units, and pi and pj are associates if and only if i = j. 
l1 l2 l3 lkIn this case it is clear, using (19.15), that the gcd is d = p1 p2 p3 · · · pk , 

where li is the minimum of mi and ni. D 

Lemma 19.19. Let R be a ring, let Ii be a collection of ideals in R 
and let I be their intersection. 

Then I is an ideal. 

Proof. Easy exercise left to the reader. D 

Definition-Lemma 19.20. Let R be a ring and let S be a subset of R. 
The ideal generated by S, denoted (S), is the smallest ideal containing 
S. 

Proof. Let Ii be the collection of all ideals that contain S. Then the 
intersection I of these ideals, is an ideal by (19.19) and this is clearly 
the smallest ideal that contains S. D 

Lemma 19.21. Let R be a ring and let S be subset of R. 
Then the ideal generated by S consists of all finite combinations 

r1a1 + r2a2 + · · · + rkak, 

where r1, r2, . . . , rk ∈ R and a1, a2, . . . , ak ∈ S. 

Proof. It is clear that any ideal that contains S must contain all ele
ments of this form, since any ideal is closed under addition and multi
plication by elements of R. On the other hand, it is an easy exercise 
to check that these combinations do form an ideal. D 

Lemma 19.22. Let R be a PID. 
Then every pair of elements a and b has a gcd d, such that 

d = ra + sb, 

where r and s ∈ R. 

Proof. Consider the ideal I generated by a and b, (a, b). As R is a PID, 
I = (d). As d ∈ I, d = ra + sb, for some r and s in R. As a ∈ I = (d), 
d divides a. Similarly d divides b. Suppose that d ' divides a and d ' 

divides b. Then (a, b) ⊂ (d ' ). But then d|d ' . D 
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Theorem 19.23. Let R be a PID. 
Then R is a UFD. 

Proof. We have already seen that the set of principal ideals satisfies 
the ACC. It remains to prove that irreducible implies prime. 

Let a be an irreducible element of R. Let b and c be any two elements 
of R and suppose that a divides the product bc. Then bc ∈ (a). Let d 
be the gcd of a and b. Then d divides a. As a is irreducible, there are 
only two possibilities; either d is an associate of a or d is a unit. 

Suppose that d is an associate of a. As d divides b, then a divides 
b and we are done. Otherwise d is a unit, which we may take to be 1. 
In this case, by (19.22), we may find r and s such that 1 = ra + sb. 
Multiplying by c, we have 

c = rac + sbc = (rc + qs)a, 

so that a divides c. Thus a is prime and R is a UFD. D 
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