
15. Basic Properties of Rings
 

We first prove some standard results about rings.
 

Lemma 15.1. Let R be a ring and let a and b be elements of R. 
Then 

(1) a0 = 0a = 0. 
(2) a(−b) = (−a)b = −(ab). 

Proof. Let x = a0. We have 

x = a0 

= a(0 + 0) 

= a0 + a0 

= x + x. 

Adding −x to both sides, we get x = 0, which is (1). 
Let y = a(−b). We want to show that y is the additive inverse of ab, 

that is we want to show that y + ab = 0. We have 

y + ab = a(−b) + ab 

= a(−b + b) 

= a0 

= 0, 

by (1). Hence (2). D 

Lemma 15.2. Let R be a set that satisfies all the axioms of a ring, 
except possibly a + b = b + a. 

Then R is a ring. 

Proof. It suffices to prove that addition is commutative. We compute 
(a + b)(1 + 1), in two different ways. Distributing on the right, 

(a + b)(1 + 1) = (a + b)1 + (a + b)1 

= a + b + a + b 

= a + (b + a) + b. 

On the other hand, distributing this product on the left we get 

(a + b)(1 + 1) = a(1 + 1) + b(1 + 1) 

= a + a + b + b. 

Thus 
a + (b + a) + a = (a + b)(1 + 1) = a + a + b + b. 
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Cancelling an a on the left and a b on the right, we get 

b + a = a + b, 

which is what we want. D 

Note the following identity. 

Lemma 15.3. Let R be a ring and let a and b be any two elements of 
R. 

Then 
(a + b)2 = a 2 + ab + ba + b2 . 

Proof. Easy application of the distributive laws. D 

Definition 15.4. Let R be a ring. We say that R is commutative if 
multiplication is commutative, that is 

a · b = b · a. 

Note that most of the rings introduced in the the first section are not 
commutative. Nevertheless it turns out that there are many interest
ing commutative rings. Compare this with the study of groups, when 
abelian groups are not considered very interesting. 

Definition-Lemma 15.5. Let R be a ring. We say that R is boolean 
if for every a ∈ R, a2 = a. 
Every boolean ring is commutative. 

Proof. We compute (a + b)2 . 

a + b = (a + b)2 

= a 2 + ba + ab + b2 

= a + ba + ab + b. 

Cancelling we get ab = −ba. If we take b = 1, then a = −a, so that 
−(ba) = (−b)a = ba. Thus ab = ba. D 

Definition 15.6. Let R be a ring. We say that R is a division ring 
if R −{0} is a group under multiplication. If in addition R is commu
tative, we say that R is a field. 

Note that a ring is a division ring iff every non-zero element has a 
multiplicative inverse. Similarly for commutative rings and fields. 

Example 15.7. The following tower of subsets 

Q ⊂ R ⊂ C 

is in fact a tower of subfields. Note that Z is not a field however, as 2 
does not have a multiplicative inverse. Further the subring of Q given 

2 

MIT OCW: 18.703 Modern Algebra Prof. James McKernan



by those rational numbers with odd denominator is not a field either. 
Again 2 does not have a multiplicative inverse. 

Lemma 15.8. The quaternions are a division ring. 

Proof. It suffices to prove that every non-zero number has a multiplica
tive inverse. 

Let q = a + bi + cj + dk be a quaternion. Let 

q̄ = a − bi − cj − dk, 

the conjugate of q. Note that 
2 + b2 2 + d2 qq̄ = a + c . 

As a, b, c and d are real numbers, this product if non-zero iff q is 
non-zero. Thus 

q̄
p = , 

a2 + b2 + c2 + d2 

is the multiplicative inverse of q. D 

Here is an obvious necessary condition for division rings: 

Definition-Lemma 15.9. Let R be a ring. We say that a ∈ R, a  = 0, 
is a zero-divisor if there is an element b ∈ R, b  = 0, such that, either, 

ab = 0 or ba = 0. 

If a has a multiplicative inverse in R then a is not a zero divisor. 

Proof. Suppose that ba = 0 and that c is the multiplicative inverse of 
a. We compute bac, in two different ways. 

bac = (ba)c 

= 0c 

= 0. 

On the other hand 

bac = b(ac) 

= b1 

= b. 

Thus b = bac = 0. Thus a is not a zero divisor. D 

Definition-Lemma 15.10. Let R be a ring. We say that R is a 
domain if R has no zero-divisors. If in addition R is commutative, 
then we say that R is an integral domain. 

Every division ring is a domain. 

Unfortunately the converse is not true. 
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Example 15.11. Z is an integral domain but not a field. 

In fact any subring of a division ring is clearly a domain. Many of 
the examples of rings that we have given are in fact not domains. 

Example 15.12. Let X be a set with more than one element and let 
R be any ring. Then the set of functions from X to R is not a domain. 
Indeed pick any partition of X into two parts, X1 and X2 (that is 
suppose that X1 and X2 are disjoint, both non-empty and that their 
union is the whole of X). Define f : X −→ R, by  

0 x ∈ X1
f(x) =

1 x ∈ X2, 

and g : X −→ R, by  
1 x ∈ X1 

g(x) =
0 x ∈ X2. 

Then fg = 0, but neither f not g is zero. Thus f is a zero-divisor. 
Now let R be any ring, and suppose that n > 1. I claim that Mn(R) 

is not a domain. We will do this in the case n = 2. The general is not 
much harder, just more involved notationally. Set   

0 1 
A = B = .

0 0

Then it is easy to see that   
0 0 

AB = .
0 0

Note that the definition of an integral domain involves a double 
negative. In other words, R is an integral domain iff whenever 

ab = 0, 

where a and b are elements of R, then either a = 0 or b = 0. 
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