HOMEWORK #9, DUE THURSDAY MAY 9TH

1. Herstein, Chapter 4, §6, 2.

2. Herstein, Chapter 4, §6, 3.

3. Herstein, Chapter 4, §6, 4.

4. Herstein, Chapter 4, §6, 5.

5. Let F be a field and ϕ an automorphism of F[x] such that $\phi(a) = a$ for every $a \in F$.

(i) If $f(x) \in F[x]$ prove that f(x) is irreducible in F[x] if and only if $g(x) = \phi(f(x))$ is irreducible.

(ii) Prove that if $f \in F[x]$ then deg $\phi(f) = \deg f$.

6. Let F be a field, $b \neq 0$, c elements of F. Define a function

 $\phi \colon F[x] \longrightarrow F[x]$ by $\phi(f(x)) = f(bx + c)$.

for every $f(x) \in F[x]$. Prove that ϕ is automorphism of F[x] such that $\phi(a) = a$ for every $a \in F$.

7. Let ϕ be an automorphism of F[x] such that $\phi(a) = a$ for every $a \in F$. Prove that there exists $b \neq 0$, c, such that $\phi(f(x)) = f(bx + c)$ for every $f(x) \in F[x]$.

8. (i) Find an automorphism of $\mathbb{Q}[x]$, not equal to the identity, such that ϕ^2 is equal to the identity.

(ii) Given any integer n > 0, exhibit an automorphism ϕ of $\mathbb{C}[x]$ of order n.

9. (i) If F is a field of characteristic $p \neq 0$, show that

$$(a+b)^p = a^p + b^p,$$

for all $a, b \in F$.

(ii) If F is a field of characteristic $p \neq 0$, show that the map

$$\phi \colon F \longrightarrow F$$
 given by $\phi(a) = a^q$

is a ring homomorphism, where $q = p^n$ is a power of p. (iii) Show that ϕ is injective.

(iv) If F is a finite field show that ϕ is an automorphism.

Challenge Problem: 10. Give an example of a field F of characteristic p such that $\phi(a) = a^p$ is not surjective. MIT OpenCourseWare http://ocw.mit.edu

18.703 Modern Algebra Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.