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Goodness of fit tests
 

Let X be a r.v. Given i.i.d copies of X we want to answer the 
following types of questions: 

◮ Does X have distribution N (0, 1)? (Cf. Student’s T 
distribution) 

◮ Does X have distribution U([0, 1])? (Cf p-value under H0) 

◮ Does X have PMF p1 = 0.3, p2 = 0.5, p3 = 0.2 

These are all goodness of fit tests: we want to know if the 
hypothesized distribution is a good fit for the data. 

Key characteristic of GoF tests: no parametric modeling. 
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Cdf and empirical cdf (1) 

Let X1, . . . ,Xn be i.i.d. real random variables. Recall the cdf of 
X1 is defined as: 

F (t) = IP[X1 ≤ t], ∀t ∈ IR. 

It completely characterizes the distribution of X1. 

Definition 
The empirical cdf of the sample X1, . . . ,Xn is defined as: 

n 
L1 

Fn(t) = 1{Xi ≤ t}
n 

i=1 

#{i = 1, . . . , n : Xi ≤ t}
= , ∀t ∈ IR. 

n 
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Cdf and empirical cdf (2)
 

By the LLN, for all t ∈ IR, 

a.s.
Fn(t) −−−→ F (t). 

n→∞ 

Glivenko-Cantelli Theorem (Fundamental theorem of 
statistics) 

a.s.
sup |Fn(t)− F (t)| −−−→ 0. 

n→∞ t∈IR 
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Cdf and empirical cdf (3)
 

By the CLT, for all t ∈ IR, 
√ (d) ( )

n (Fn(t)− F (t)) −−−→ N 0, F (t) (1− F (t)) . 
n→∞ 

Donsker’s Theorem 

If F is continuous, then 

√ (d)
n sup |Fn(t)− F (t)| −−−→ sup |B(t)|, 

n→∞ t∈IR 0≤t≤1

where B is a Brownian bridge on [0, 1]. 
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Kolmogorov-Smirnov test (1)
 

◮ Let X1, . . . ,Xn be i.i.d. real random variables with unknown 
cdf F and let F 0 be a continuous cdf. 

◮ Consider the two hypotheses: 

H0 : F = F 0 v.s. H1 : F  = F 0 . 

◮ Let Fn be the empirical cdf of the sample X1, . . . ,Xn. 

◮ If F = F 0, then Fn(t) ≈ F 0(t), for all t ∈ [0, 1]. 
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Kolmogorov-Smirnov test (2)
 

◮ Let Tn = sup 
√ 
n  

 

Fn(t)− F 0(t) 
 

. 
t∈IR 

(d)
◮ By Donsker’s theorem, if H0 is true, then Tn −−−→ Z, 

n→∞ 

where Z has a known distribution (supremum of a Brownian 
bridge). 

◮ KS test with asymptotic level α: 

δKS = 1{Tn > qα},α 

where qα is the (1− α)-quantile of Z (obtained in tables). 

◮ p-value of KS test: IP[Z > Tn|Tn]. 
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Kolmogorov-Smirnov test (3)
 

Remarks: 

◮ In practice, how to compute Tn ?
 

◮ F 0 is non decreasing, Fn is piecewise constant, with jumps at
 
ti = Xi, i = 1, . . . , n.
 

◮ Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the reordered sample.
 

◮ The expression for Tn reduces to the following practical
 
formula: 

  

{ }√ i− 1 i 
Tn = n max max − F 0(X(i)) , − F 0(X(i)) . 

i=1,...,n n n 
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Kolmogorov-Smirnov test (4)
 

◮	 Tn is called a pivotal statistic : If H0 is true, the distribution 

of Tn does not depend on the distribution of the Xi’s and it is 

easy to reproduce it in simulations. 

◮	 Indeed, let Ui = F 0(Xi), i = 1, . . . , n and let Gn be the 

empirical cdf of U1, . . . , Un. 

i.i.d.
◮	 If H0 is true, then U1, . . . , Un ∼ U ([0.1]) 

√ 
and Tn = sup n |Gn(x)− x|. 

0≤x≤1 
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Kolmogorov-Smirnov test (5)
 

◮ For some large integer M : 
◮ Simulate M i.i.d. copies T 1 , . . . , T M of Tn;n n 

(n)
◮ Estimate the (1− α)-quantile qα of Tn by taking the sample 

(n,M)
(1− α)-quantile q̂α of Tn

1 , . . . , T n
M . 

◮ Test with approximate level α: 

(n,M)δα = 1{Tn > q̂ }.α 

◮ Approximate p-value of this test: 

j#{j = 1, . . . ,M : Tn > Tn}
p-value ≈ . 

M 
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Kolmogorov-Smirnov test (6) 

These quantiles are often precomputed in a table. 
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Other goodness of fit tests
 

We want to measure the distance between two functions: Fn(t) 
and F (t). There are other ways, leading to other tests: 

◮ Kolmogorov-Smirnov: 

d(Fn, F ) = sup |Fn(t)− F (t)|
t∈IR 

◮ Cramér-Von Mises: 

d2(Fn, F ) = [Fn(t)− F (t)]2 dt 
IR 

◮ Anderson-Darling: 

[Fn(t)− F (t)]2 
d2(Fn, F ) = dt 

F (t)(1− F (t)) IR 
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Composite goodness of fit tests
 

What if I want to test: ”Does X have Gaussian distribution?” but 
I don’t know the parameters? 
Simple idea: plug-in 

sup Fn(t)− Φˆ σ2 (t)µ,ˆ
t∈IR 

where 
¯ σ2 S2 µ̂ = Xn, ˆ = n 

and Φˆ σ2 (t) is the cdf of N (µ̂, σ̂2).µ,ˆ

In this case Donsker’s theorem is no longer valid. This is a 
common and serious mistake! 
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Kolmogorov-Lilliefors test (1)
 

Instead, we compute the quantiles for the test statistic: 

sup Fn(t)− Φˆ σ2 (t)µ,ˆ
t∈IR 

They do not depend on unknown parameters! 

This is the Kolmogorov-Lilliefors test. 
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Kolmogorov-Lilliefors test (2) 

These quantiles are often precomputed in a table. 
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Quantile-Quantile (QQ) plots (1)
 

◮ Provide a visual way to perform GoF tests 

◮ Not formal test but quick and easy check to see if a 
distribution is plausible. 

◮ Main idea: we want to check visually if the plot of Fn is close 
to that of F or equivalently if the plot of F−1 is close to that n 

of F−1 .
 

◮ More convenient to check if the points
 

( 1 1 ) ( 2 2 ) ( n − 1 n − 1 )
F−1( ), F−1( ) , F−1( ), F−1( ) , . . . , F−1( ), F−1( )n n n n n n n n n 

are near the line y = x. 

◮ Fn is not technically invertible but we define 

F−1(i/n) = n X(i), 

the ith largest observation.
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χ 2 goodness-of-fit test, finite case (1) 

◮	 Let X1, . . . ,Xn be i.i.d. random variables on some finite 
space E = {a1, . . . , aK}, with some probability measure IP. 

◮	 Let (IPθ)θ∈Θ be a parametric family of probability 
distributions on E. 

◮	 Example: On E = {1, . . . ,K}, consider the family of binomial 
distributions (Bin(K, p))p∈(0,1). 

◮ For j = 1, . . . ,K and θ ∈ Θ, set 

pj(θ) = IPθ[Y = aj], where Y ∼ IPθ 

and 
pj = IP[X1 = aj]. 
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χ 2 goodness-of-fit test, finite case (2) 

◮ Consider the two hypotheses: 

H0 : IP ∈ (IPθ) v.s. H1 : IP ∈/ (IPθ) .θ∈Θ θ∈Θ 

◮ Testing H0 means testing whether the statistical model 
( )

E, (IPθ)θ∈Θ fits the data (e.g., whether the data are indeed 

from a binomial distribution). 

◮ H0 is equivalent to: 

pj = pj(θ), ∀j = 1, . . . , K, for some θ ∈ Θ. 
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χ 2 goodness-of-fit test, finite case (3) 

◮ Let θ̂ be the MLE of θ when assuming H0 is true. 

◮ Let 
n 
L1	 #{i : Xi = aj}

p̂j = 1{Xi = aj} =	 , j = 1, . . . ,K. 
n	 n 

i=1 

◮	 Idea: If H0 is true, then pj = pj(θ) so both p̂j and pj(θ̂) are 

good estimators or pj . Hence, p̂j ≈ pj(θ̂), ∀j = 1, . . . ,K. 

� �2 
K 
L 

p̂j − pj(θ̂) 
◮ Define the test statistic: Tn = n . 

θ)
j=1 pj(ˆ
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χ 2 goodness-of-fit test, finite case (4) 

◮ Under some technical assumptions, if H0 is true, then 

(d)
Tn −−−→ χ2 

K−d−1, 
n→∞ 

where d is the size of the parameter θ (Θ ⊆ IRd and 
d < K − 1). 

◮ Test with asymptotic level α ∈ (0, 1): 

δα = 1{Tn > qα}, 

where qα is the (1− α)-quantile of χ2 
K−d−1. 

◮ p-value: IP[Z > Tn|Tn], where Z ∼ χ2 and Z ⊥⊥ Tn.K−d−1 
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χ 2 goodness-of-fit test, infinite case (1) 

◮ If E is infinite (e.g. E = IN, E = IR, ...): 

◮ Partition E into K disjoint bins: 

E = A1 ∪ . . . ∪AK . 

◮ Define, for θ ∈ Θ and j = 1, . . . ,K: 

◮ pj(θ) = IPθ[Y ∈ Aj ], for Y ∼ IPθ, 

◮ pj = IP[X1 ∈ Aj ], 

n 
L1 #{i : Xi ∈ Aj}

◮ p̂j = 1{Xi ∈ Aj} = , 
n n 

i=1 

◮ θ̂: same as in the previous case. 
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χ 2 goodness-of-fit test, infinite case (2) 
2 

K 
L 

p̂j − pj(θ̂) 
◮ As previously, let Tn = n . 

pj(θ̂)j=1 

◮ Under some technical assumptions, if H0 is true, then 

(d)
Tn −−−→ χ2 

K−d−1, 
n→∞ 

where d is the size of the parameter θ (Θ ⊆ IRd and 
d < K − 1). 

◮ Test with asymptotic level α ∈ (0, 1): 

δα = 1{Tn > qα}, 

where qα is the (1− α)-quantile of χ2 
K−d−1. 
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χ 2 goodness-of-fit test, infinite case (3) 

◮ Practical issues:
 

◮ Choice of K ?
 

◮ Choice of the bins A1, . . . , AK ?
 

◮ Computation of pj(θ) ?
 

◮	 Example 1: Let E = IN and H0 : IP ∈ (Poiss(λ))λ>0. 

◮	 If one expects λ to be no larger than some λmax, one can 

choose A1 = {0}, A2 = {1}, . . . , AK−1 = {K − 2}, AK = 

{K − 1,K,K + 1, . . .}, with K large enough such that 

pK(λmax) ≈ 0. 
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