Statistics for Applications

Chapter 7: Regression

Heuristics of the linear regression (1)

Consider a cloud of i.i.d. random points $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$:

- Idea: Fit the best line fitting the data.
- Approximation: $Y_{i} \approx a+b X_{i}, i=1, \ldots, n$, for some (unknown) $a, b \in \mathbb{R}$.
- Find \hat{a}, \hat{b} that approach a and b.
- More generally: $Y_{i} \in \mathbb{R}, X_{i} \in \mathbb{R}^{d}$,

$$
Y_{i} \approx a+X_{i}^{\top} b, \quad a \in \mathbb{R}, b \in \mathbb{R}^{d}
$$

- Goal: Write a rigorous model and estimate a and b.

Heuristics of the linear regression (3)

Examples:

Economics: Demand and price,

$$
D_{i} \approx a+b p_{i}, \quad i=1, \ldots, n
$$

Ideal gas law: $P V=n R T$,

$$
\log P_{i} \approx a+b \log V_{i}+c \log T_{i}, \quad i=1, \ldots, n .
$$

Linear regression of a r.v. Y on a r.v. $X(1)$

Let X and Y be two real r.v. (non necessarily independent) with two moments and such that $\operatorname{Var}(X) \neq 0$.

The theoretical linear regression of Y on X is the best approximation in quadratic means of Y by a linear function of X, i.e. the r.v. $a+b X$, where a and b are the two real numbers minimizing $\mathbb{E}\left[(Y-a-b X)^{2}\right]$.

By some simple algebra:

$$
b=\frac{\operatorname{cov}(X, Y)}{\operatorname{Var}(X)},
$$

$$
a=\mathbb{E}[Y]-b \mathbb{E}[X]=\mathbb{E}[Y]-\frac{\operatorname{cov}(X, Y)}{\operatorname{Var}(X)} \mathbb{E}[X] .
$$

Linear regression of a r.v. Y on a r.v. X (2)

If $\varepsilon=Y-(a+b X)$, then

$$
Y=a+b X+\varepsilon
$$

with $\mathbb{E}[\varepsilon]=0$ and $\operatorname{cov}(X, \varepsilon)=0$.

Conversely: Assume that $Y=a+b X+\varepsilon$ for some $a, b \in \mathbb{R}$ and some centered r.v. ε that satisfies $\operatorname{cov}(X, \varepsilon)=0$.
E.g., if $X \Perp \varepsilon$ or if $\mathbb{E}[\varepsilon \mid X]=0$, then $\operatorname{cov}(X, \varepsilon)=0$.

Then, $a+b X$ is the theoretical linear regression of Y on X.

Linear regression of a r.v. Y on a r.v. X (3)
A sample of n i.i.d. random pairs (X_{1}, \ldots, X_{n}) with same distribution as (X, Y) is available.

We want to estimate a and b.

Linear regression of a r.v. Y on a r.v. X (3)
A sample of n i.i.d. random pairs $\left(X_{1}, \ldots, X_{n}\right)$ with same distribution as (X, Y) is available.

We want to estimate a and b.

Linear regression of a r.v. Y on a r.v. X (3)
A sample of n i.i.d. random pairs $\left(X_{1}, \ldots, X_{n}\right)$ with same distribution as (X, Y) is available.

We want to estimate a and b.

Linear regression of a r.v. Y on a r.v. X (3)
A sample of n i.i.d. random pairs $\left(X_{1}, \ldots, X_{n}\right)$ with same distribution as (X, Y) is available.

We want to estimate a and b.

Linear regression of a r.v. Y on a r.v. X (3)
A sample of n i.i.d. random pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with same distribution as (X, Y) is available.

We want to estimate a and b.

Linear regression of a r.v. Y on a r.v. X (4)

Definition

The least squared error (LSE) estimator of (a, b) is the minimizer of the sum of squared errors:

$$
\sum_{i=1}^{n}\left(Y_{i}-a-b X_{i}\right)^{2} .
$$

(\hat{a}, \hat{b}) is given by

$$
\begin{gathered}
\hat{b}=\frac{\overline{X Y}-\bar{X} \bar{Y}}{\overline{X^{2}}-\bar{X}^{2}}, \\
\hat{a}=\bar{Y}-\hat{b} \bar{X} .
\end{gathered}
$$

Linear regression of a r.v. Y on a r.v. X (5)

Multivariate case (1)

$$
Y_{i}=\mathbf{X}_{i} \boldsymbol{\beta}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

Vector of explanatory variables or covariates: $\mathbf{X}_{i} \in \mathbb{R}^{p}$ (wlog, assume its first coordinate is 1).

Dependent variable: Y_{i}.
$\boldsymbol{\beta}=(a, \mathbf{b}) ; \beta_{1}(=a)$ is called the intercept.
$\left\{\varepsilon_{i}\right\}_{i=1, \ldots, n}$: noise terms satisfying $\operatorname{cov}\left(\mathbf{X}_{i}, \varepsilon_{i}\right)=\mathbf{0}$.
Definition
The least squared error (LSE) estimator of $\boldsymbol{\beta}$ is the minimizer of the sum of square errors:

$$
\hat{\boldsymbol{\beta}}=\underset{\mathbf{t} \in \mathbb{R}^{p}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{X}_{i} \mathbf{t}\right)^{2}
$$

Multivariate case (2)

LSE in matrix form

$$
\text { Let } \mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{R}^{n}
$$

Let \mathbf{X} be the $n \times p$ matrix whose rows are $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ (\mathbf{X} is called the design).

$$
\begin{aligned}
& \text { Let } \boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbb{R}^{n} \text { (unobserved noise) } \\
& \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} .
\end{aligned}
$$

The LSE $\hat{\boldsymbol{\beta}}$ satisfies:

$$
\hat{\boldsymbol{\beta}}=\underset{\mathbf{t} \in \mathbb{R}^{p}}{\operatorname{argmin}}\|\mathbf{Y}-\mathbf{X t}\|_{2}^{2} .
$$

Multivariate case (3)

Assume that $\operatorname{rank}(\mathbf{X})=p$.
Analytic computation of the LSE:

$$
\hat{\boldsymbol{\beta}}=\left(\begin{array}{lll}
\mathbf{X} & \mathbf{X}
\end{array}\right)^{-1} \mathbf{X} \quad \mathbf{Y} .
$$

Geometric interpretation of the LSE
$\mathbf{X} \hat{\boldsymbol{\beta}}$ is the orthogonal projection of \mathbf{Y} onto the subspace spanned by the columns of \mathbf{X} :

$$
\mathbf{X} \hat{\boldsymbol{\beta}}=P \mathbf{Y}
$$

where $P=\mathbf{X}\left(\begin{array}{ll}\mathbf{X} & \mathbf{X}\end{array}\right)^{-1} \mathbf{X}$.

Linear regression with deterministic design and Gaussian noise (1)

Assumptions:

The design matrix \mathbf{X} is deterministic and $\operatorname{rank}(\mathbf{X})=p$.
The model is homoscedastic: $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d.

The noise vector ε is Gaussian:

$$
\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right)
$$

for some known or unknown $\sigma^{2}>0$.

Linear regression with deterministic design and Gaussian noise (2)

LSE $=$ MLE: $\quad \hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p}\left(\boldsymbol{\beta}, \sigma^{2}(\mathbf{X} \quad \mathbf{X})^{-1}\right)$.
Quadratic risk of $\hat{\boldsymbol{\beta}}: \quad \mathbb{E}\left[\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{2}^{2}\right]=\sigma^{2} \operatorname{tr}\left((\mathbf{X} \mathbf{X})^{-1}\right)$.
Prediction error: $\quad \mathbb{E}\left[\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|_{2}^{2}\right]=\sigma^{2}(n-p)$.
Unbiased estimator of $\sigma^{2}: \quad \hat{\sigma}^{2}=\frac{1}{n-p}\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|_{2}^{2}$.
Theorem

$$
\begin{aligned}
& (n-p) \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{n-p}^{2} . \\
& \hat{\boldsymbol{\beta}} \Perp \hat{\sigma}^{2} .
\end{aligned}
$$

Significance tests (1)

Test whether the j-th explanatory variable is significant in the linear regression $(1 \leq j \leq p)$.
$H_{0}: \beta_{j}=0$ v.s. $H_{1}: \beta_{j}=0$.
If γ_{j} is the j-th diagonal coefficient of $(\mathbf{X} \mathbf{X})^{-1}\left(\gamma_{j}>0\right)$:

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\hat{\sigma}^{2} \gamma_{j}}} \sim t_{n-p}
$$

Let $T_{n}^{(j)}=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2} \gamma_{j}}}$.
Test with non asymptotic level $\alpha \in(0,1)$:

$$
\delta_{\alpha}^{(j)}=\mathbb{1}\left\{\left|T_{n}^{(j)}\right|>q_{\frac{\alpha}{2}}\left(t_{n-p}\right)\right\},
$$

where $q_{\frac{\alpha}{2}}\left(t_{n-p}\right)$ is the $(1-\alpha / 2)$-quantile of t_{n-p}.

Significance tests (2)

Test whether a group of explanatory variables is significant in the linear regression.
$H_{0}: \beta_{j}=0, \forall j \in S$ v.s. $H_{1}: \exists j \in S, \beta_{j}=0$, where $S \subseteq\{1, \ldots, p\}$.

Bonferroni's test: $\delta_{\alpha}^{B}=\max _{j \in S} \delta_{\alpha / k}^{(j)}$, where $k=|S|$.
δ_{α} has non asymptotic level at most α.

More tests (1)
Let G be a $k \times p$ matrix with $\operatorname{rank}(G)=k(k \leq p)$ and $\boldsymbol{\lambda} \in \mathbb{R}^{k}$.
Consider the hypotheses:

$$
H_{0}: G \boldsymbol{\beta}=\boldsymbol{\lambda} \text { v.s. } H_{1}: G \boldsymbol{\beta}=\boldsymbol{\lambda}
$$

The setup of the previous slide is a particular case.

If H_{0} is true, then:

$$
G \hat{\boldsymbol{\beta}}-\boldsymbol{\lambda} \sim \mathcal{N}_{k} \quad 0, \sigma^{2} G(\mathbf{X} \quad \mathbf{X})^{-1} G
$$

and

$$
\sigma^{-2}(G \hat{\boldsymbol{\beta}}-\boldsymbol{\lambda}) \quad G(\mathbf{X} \mathbf{X})^{-1} G \quad{ }^{-1}(G \boldsymbol{\beta}-\boldsymbol{\lambda}) \sim \chi_{k}^{2} .
$$

More tests (2)

$$
\text { Let } S_{n}=\frac{1}{\hat{\sigma}^{2}} \frac{(G \hat{\boldsymbol{\beta}}-\boldsymbol{\lambda})\left(G(\mathbf{X} \mathbf{X})^{-1} G\right)^{-1}(G \boldsymbol{\beta}-\boldsymbol{\lambda})}{k}
$$

If H_{0} is true, then $S_{n} \sim F_{k, n-p}$.
Test with non asymptotic level $\alpha \in(0,1)$:

$$
\delta_{\alpha}=\mathbb{1}\left\{S_{n}>q_{\alpha}\left(F_{k, n-p}\right)\right\},
$$

where $q_{\alpha}\left(F_{k, n-p}\right)$ is the $(1-\alpha)$-quantile of $F_{k, n-p}$.

Definition

The Fisher distribution with p and q degrees of freedom, denoted by $F_{p, q}$, is the distribution of $\frac{U / p}{V / q}$, where:

$$
\begin{aligned}
& U \sim \chi_{p}^{2}, V \sim \chi_{q}^{2} \\
& U \Perp V .
\end{aligned}
$$

Concluding remarks

Linear regression exhibits correlations, NOT causality
Normality of the noise: One can use goodness of fit tests to test whether the residuals $\hat{\varepsilon}_{i}=Y_{i}-\mathbf{X}_{i} \hat{\boldsymbol{\beta}}$ are Gaussian.

Deterministic design: If \mathbf{X} is not deterministic, all the above can be understood conditionally on \mathbf{X}, if the noise is assumed to be Gaussian, conditionally on X.

Linear regression and lack of identifiability (1)

Consider the following model:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

with:

1. $\mathbf{Y} \in \mathbb{R}^{n}$ (dependent variables), $\mathbf{X} \in \mathbb{R}^{n \times p}$ (deterministic design);
2. $\boldsymbol{\beta} \in \mathbb{R}^{p}$, unknown;
3. $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right)$.

Previously, we assumed that X had rank p, so we could invert $X \quad X$.

What if X is not of rank p ? E.g., if $p>n$?
$\boldsymbol{\beta}$ would no longer be identified: estimation of $\boldsymbol{\beta}$ is vain (unless we add more structure).

Linear regression and lack of identifiability (2)

What about prediction ? $\mathbf{X} \boldsymbol{\beta}$ is still identified.
$\hat{\mathbf{Y}}$: orthogonal projection of \mathbf{Y} onto the linear span of the columns of \mathbf{X}.
$\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}(\mathbf{X} \mathbf{X})^{\dagger} \mathbf{X Y}$, where A^{\dagger} stands for the (Moore-Penrose) pseudo inverse of a matrix A.

Similarly as before, if $k=\operatorname{rank}(\mathbf{X})$:

$$
\begin{aligned}
& \frac{\|\hat{\mathbf{Y}}-\mathbf{Y}\|_{2}^{2}}{\sigma^{2}} \sim \chi_{n-k}^{2}, \\
& \|\hat{\mathbf{Y}}-\mathbf{Y}\|_{2}^{2} \Perp \hat{\mathbf{Y}} .
\end{aligned}
$$

Linear regression and lack of identifiability (3)

In particular:

$$
\mathbb{E}\left[\|\hat{\mathbf{Y}}-\mathbf{Y}\|_{2}^{2}\right]=(n-k) \sigma^{2}
$$

Unbiased estimator of the variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-k}\|\hat{\mathbf{Y}}-\mathbf{Y}\|_{2}^{2}
$$

Linear regression in high dimension (1)
Consider again the following model:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon},
$$

with:

1. $\mathbf{Y} \in \mathbb{R}^{n}$ (dependent variables), $\mathbf{X} \in \mathbb{R}^{n \times p}$ (deterministic design) ;
2. $\boldsymbol{\beta} \in \mathbb{R}^{p}$, unknown: to be estimated;
3. $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right)$.

For each $i, X_{i} \in \mathbb{R}^{p}$ is the vector of covariates of the i-th individual.

If p is too large $(p>n)$, there are too many parameters to be estimated (overfitting model), although some covariates may be irrelevant.

Solution: Reduction of the dimension.

Linear regression in high dimension (2)

Idea: Assume that only a few coordinates of $\boldsymbol{\beta}$ are nonzero (but we do not know which ones).

Based on the sample, select a subset of covariates and estimate the corresponding coordinates of $\boldsymbol{\beta}$.

For $S \subseteq\{1, \ldots, p\}$, let

$$
\hat{\boldsymbol{\beta}}_{S} \in \underset{\mathbf{t} \in \mathbb{R}^{S}}{\operatorname{argmin}}\left\|\mathbf{Y}-\mathbf{X}_{S} \mathbf{t}\right\|^{2},
$$

where \mathbf{X}_{S} is the submatrix of \mathbf{X} obtained by keeping only the covariates indexed in S.

Linear regression in high dimension (3)

Select a subset S that minimizes the prediction error penalized by the complexity (or size) of the model:

$$
\left\|\mathbf{Y}-\mathbf{X}_{S} \hat{\boldsymbol{\beta}}_{S}\right\|^{2}+\lambda|S|
$$

where $\lambda>0$ is a tuning parameter.
If $\lambda=2 \hat{\sigma}^{2}$, this is the Mallow's C_{p} or AIC criterion.
If $\lambda=\hat{\sigma}^{2} \log n$, this is the BIC criterion.

Linear regression in high dimension (4)
Each of these criteria is equivalent to finding $\boldsymbol{\beta} \in \mathbb{R}^{p}$ that minimizes:

$$
\|\mathbf{Y}-\mathbf{X} \mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{b}\|_{0}
$$

where $\|\mathbf{b}\|_{0}$ is the number of nonzero coefficients of \mathbf{b}.
This is a computationally hard problem: nonconvex and requires to compute 2^{n} estimators (all the $\hat{\boldsymbol{\beta}}_{S}$, for $S \subseteq\{1, \ldots, p\}$).

Lasso estimator:

$$
\text { replace }\|\mathbf{b}\|_{0}=\sum_{j=1}^{p} \mathbb{I}\left\{b_{j}=0\right\} \quad \text { with } \quad\|\mathbf{b}\|_{1}=\sum_{j=1}^{p}\left|b_{j}\right|
$$

and the problem becomes convex.

$$
\hat{\boldsymbol{\beta}}^{L} \in \underset{\mathbf{b} \in \mathbb{R}^{p}}{\operatorname{argmin}}\|\mathbf{Y}-\mathbf{X b}\|^{2}+\lambda\|\mathbf{b}\|_{1},
$$

where $\lambda>0$ is a tuning parameter.

Linear regression in high dimension (5)

How to choose λ ?

This is a difficult question (see grad course 18.657: "High-dimensional statistics" in Spring 2017).

A good choice of λ with lead to an estimator $\hat{\boldsymbol{\beta}}$ that is very close to $\boldsymbol{\beta}$ and will allow to recover the subset S^{*} of all $j \in\{1, \ldots, p\}$ for which $\boldsymbol{\beta}_{j}=0$, with high probability.

Linear regression in high dimension (6)

Nonparametric regression (1)

In the linear setup, we assumed that $Y_{i}=\mathbf{X}_{i} \boldsymbol{\beta}+\varepsilon_{i}$, where \mathbf{X}_{i} are deterministic.

This has to be understood as working conditionally on the design.

This is to assume that $\mathbb{E}\left[Y_{i} \mid \mathbf{X}_{i}\right]$ is a linear function of \mathbf{X}_{i}, which is not true in general.

Let $f(x)=\mathbb{E}\left[Y_{i} \mid \mathbf{X}_{i}=x\right], x \in \mathbb{R}^{p}$: How to estimate the function f ?

Nonparametric regression (2)

Let $p=1$ in the sequel.
One can make a parametric assumption on f.
E.g., $f(x)=a+b x, f(x)=a+b x+c x^{2}, f(x)=e^{a+b x}, \ldots$

The problem reduces to the estimation of a finite number of parameters.

LSE, MLE, all the previous theory for the linear case could be adapted.

What if we do not make any such parametric assumption on f ?

Nonparametric regression (3)

Assume f is smooth enough: f can be well approximated by a piecewise constant function.

Idea: Local averages.
For $x \in \mathbb{R}: f(t) \approx f(x)$ for t close to x.
For all i such that X_{i} is close enough to x,

$$
Y_{i} \approx f(x)+\varepsilon_{i} .
$$

Estimate $f(x)$ by the average of all Y_{i} 's for which X_{i} is close enough to x.

Nonparametric regression (4)

Let $h>0$: the window's size (or bandwidth).
Let $I_{x}=\left\{i=1, \ldots, n:\left|X_{i}-x\right|<h\right\}$.
Let $\hat{f}_{n, h}(x)$ be the average of $\left\{Y_{i}: i \in I_{x}\right\}$.

$$
\hat{f}_{n, h}(x)=\left\{\begin{array}{l}
\frac{1}{\left|I_{x}\right|} \sum_{i \in I_{x}} Y_{i} \text { if } I_{x}=\emptyset \\
0 \text { otherwise }
\end{array}\right.
$$

Nonparametric regression (5)

Nonparametric regression (6)

Nonparametric regression (7)

How to choose h ?

If $h \rightarrow 0$: overfitting the data;
If $h \rightarrow \infty$: underfitting, $\hat{f}_{n, h}(x)=\bar{Y}_{n}$.

Nonparametric regression (8)
Example:

$$
\begin{aligned}
& n=100, f(x)=x(1-x), \\
& h=.005
\end{aligned}
$$

Nonparametric regression (9)
Example:

$$
\begin{aligned}
& n=100, f(x)=x(1-x) \\
& h=1
\end{aligned}
$$

Nonparametric regression (10)
Example:

$$
\begin{aligned}
& n=100, f(x)=x(1-x), \\
& h=.2
\end{aligned}
$$

Nonparametric regression (11)

Choice of h ?

If the smoothness of f is known (i.e., quality of local approximation of f by piecewise constant functions): There is a good choice of h depending on that smoothness
If the smoothness of f is unknown: Other techniques, e.g. cross validation.

MIT OpenCourseWare
https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

